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Abstract

The increasingly tighter coupling between humans and system opera-

tions in domains ranging from intelligent infrastructure to e-commerce

has lead to a new challenging class of problems founded on a well-

established area of research: incentive design. There is a clear need

for a new toolkit for designing mechanisms that aid in coordinating

self-interested parties while avoiding unexpected outcomes in the face

of information asymmetries, exogenous uncertainties from dynamic en-

vironments, and resource constraints. The purpose of this article is to

provide a perspective on the current state of the art in incentive de-

sign from three core communities—economics, control theory, machine

learning—and highlight interesting avenues for future research at the

interface of these domains.
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1. Introduction

In recent years, technological advancements have enabled cost-effective deployment of sen-

sors and actuators at scale. This has, in turn, led to the promise of improved performance,

efficiency, and reliability in almost all of today’s modern systems. Moreover, enabled by

such technologies, humans are able to make real-time decisions that dynamically impact the

performance of these systems. Thus, as these new technologies reach further, the decisions,

interactions, and motivations of human agents that increasingly influence the operations

and dynamics of engineered systems need to be considered as an integral part of the design

of such systems and their day-to-day operations.

The following now-commonplace examples are demonstrative not only of wide-spread

sensor-actuator deployment but also issues that may arise when stakeholder motivations

are not properly accounted for:

Smart Grid. Many energy-efficiency programs run by electric utility companies use data

collected from households to forecast future energy demand, and some programs issue

rewards for curtailing or deferring energy consumption at peak times. However, these

incentive programs may inadvertently motivate users to use energy storage systems (e.g.,

batteries) in inefficient ways, and these behaviors are often not observable by the system

operators. Furthermore, users can often receive monetary gains by strategically mis-

representing their usage patterns (e.g., baseline inflation) and preferences to the utility

companies, and many of the incentive programs in deployment today are not robust to

strategic data manipulation (see (1) and the references therein).

Mobility Markets. Disruptive ride-sharing companies rapidly gain market share by pro-

viding cheap and convenient rides to users on very short notice. They have been able to

achieve this by using smart device applications to allocate portions of the transportation

infrastructure that were previously underutilized. Additionally, these companies often
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issue incentives to both sides of the market. On the passenger side, they offer incentives

to encourage increased adoption, more frequent use, and ahead-of-time announcement of

travel plans to aid in better resource allocation. Similarly, on the driver side, they offer

a variety of monetary incentives for a number of reasons including predictable supply,

microscopic and macroscopic redistribution of supply, and more frequent use. However,

these allocation algorithms need to account for the utilities and motivations, which are

private information, of the users (i.e. drivers and passengers) to ensure proper operation.

It has also been noted that ride-sharing platforms promote discriminatory behavior to-

ward socio-economically disadvantaged groups (2). Even further, a malicious actor can

manipulate the distribution of transportation resources throughout an area using dis-

honest requests; e.g., in (3), the authors analyze the effects of denial-of-service attacks

on mobility-as-a-service systems, and show that supply can be arbitrarily depleted using

spoofed ride requests.

Crowdsourcing. Due to recent advancements, machine learning algorithms require in-

creasingly large datasets. Deep learning is a prominent example; given a sufficiently

large and representative dataset, deep learning can achieve very low test error without

any prior knowledge of the problem space. However, this requires large amounts of data

and, to achieve datasets of sufficient scale, much of the data collection is crowdsourced.

These crowdsourcing mechanisms do not always incentivize accurate data collection: data

sources may not feel motivated to exert sufficient effort to collect quality data, and, fur-

ther, some malicious data sources may intentionally poison data to induce poor results

in the algorithms. Recent research has analyzed the impact of incorrectly aligning incen-

tives of the data sources (4, 5, 6, 7), as well as the sensitivity of many modern algorithms

to perturbations in a small fraction of the dataset (see (8) and the references therein).

A common thread throughout all of these examples is that human agents have a signifi-

cant impact on the output of systems with which they interact. For instance, in traditional

infrastructure systems humans were passive participants, consuming resources with no real

impact on exchange of goods and services. Yet, now in intelligent infrastructure systems,

such as the smart grid or intelligent transportation system, humans are active partici-

pants, having the ability—through intelligent augmentation or through now commonplace

Cyber-Physical System (CPS)/Internet of Things (IoT) technologies—to make decisions in

real-time that influence market and system operations.

The design of such human-in-the-loop systems requires a careful analysis of the objec-

tives and incentives of the relevant agents not only to promote efficiency but also to avoid

unintended consequences. While on the surface this appears to be a long-standing, and

perhaps obvious, problem space, there are new challenges due to the tight coupling between

humans, system operations, and market exchanges, the multi-time scale nature of decisions

and interactions, and the increasing level of automation that has lead to complex, mixed

autonomy environments in which mission critical tasks must be executed. Furthermore,

new technologies and their supporting market structures are being realized, having been

translated from prototypes to production while bypassing the development of robust mech-

anisms to certify their performance and guarantee avoidance of unexpected outcomes. An

example in point is the push for and testing of autonomous vehicles; many companies are

attempting to advance the frontier in the autonomous vehicle space and there are numerous

examples of partial and full autonomous vehicles on the road despite the lack of guarantees,

even probabilistic, for the algorithms and automation they employ.

Returning to the examples above, we note that they each illustrate how a misalignment
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of incentives can lead to inefficiencies and even cause unexpected or undesirable results.

Thus, these new technology-enabled markets and application domains drive the need for an

understanding of how to design mechanisms that:

• account for the behavior of human agents, such as competition between users and ad-

versarial decision making;

• maintain desirable economic properties (e.g., incentive compatibility, individual ratio-

nality, a balanced budget, and social welfare maximization);

• are able to operate in dynamic, non-stationary environments, which include both phys-

ical dynamics as well as coupling in various input distributions;

• are based on limited prior knowledge, yet have performance guarantees; and,

• have explainable and interpretable models that support generalization and pol-

icy/regulation design.

We believe there is a gap between the theoretical and computational tools in the state-of

the-art and those needed to not only analyze these systems but also to design interventions

for shaping them. However, focusing on the problem of incentive design—the design of

mechanisms for shaping the behavior of autonomous agents—in these systems, there is a

large body of work which we can draw on to build the requisite toolkit.

1.1. Overview of the Current State-of-the-Art

Historically, this problem has been of interest in, but not limited to, three primary commu-

nities: economics, control theory, and machine learning. There are promising developments

in each of the fields, yet taken alone, they are not sufficient. With this observation, the goal

of this article is to provide a perspective on challenges for incentive design in human-in-the-

loop systems and to motivate the development of a new set of tools for addressing them

by highlighting existing approaches, pitfalls and all, that have traditionally been siloed in

the fields of economics, control, and machine learning, respectively, and expose the reader

to open problems at their interface. We believe that with the realization of new market

structures for resource consumption and production in previously stagnated infrastructure

systems along with the increasing availability of data and computational resources, now is

the time for a merging of these fields in a deeper, more meaningful way than previously

explored.

Incentive design has long been studied within the economics community, and approaches

from this domain largely focus on designing incentives in static environments with signif-

icant a priori information and are very heavily model-based. For instance, prior informa-

tion typically includes a distribution across preference types of users, or an assumption

that the utilities of users belong to a relatively specific class of functions such as mono-

tonic, concave functions. While the model-based approach allows for interpretation and

often, generalization, scalability remains a challenge. Moreover, these approaches have lead

to the development of economically motivated constraints such as incentive compatibility

and individual rationality—the former ensures truthful reporting and the latter, voluntary

participation. These approaches usually have very interpretable models which makes them

useful for policy or regulatory design.

Similarly, the control theory community has developed a number of approaches to the

design of incentives which address some of the desiderata listed above. A notable aspect

of these approaches is that they are often capable of accounting for dynamics. Yet, they

often fail to consider the economically motivated constraints mentioned above. Moreover,
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by and large, these approaches presuppose a lot of prior knowledge and structure: the

dynamics are often either known or given in a parameterized form, it is commonly assumed

that distributions on exogenous uncertainties are known a priori, and the system designer

typically has access to reliable information that cannot be manipulated by other agents.

The latter, in particular, allows the designer to sidestep issues of moral hazard (i.e. lack

of visibility into the actions of agents) and adverse selection (i.e. lack of visibility into

preferences of agents), which often arise in practical applications. These approaches are

generally very model-based, and as such, also benefit from being highly interpretable.

Third, the machine learning community has studied similar problems using online learn-

ing methods. These approaches can operate with no prior knowledge, and provide algo-

rithms that are often completely model-agnostic. Despite their optimality when very little

underlying structure is assumed, the results and theoretical performance guarantees, which

come in the form of regret bounds or worst-case competitive ratios, are often very conser-

vative. Indeed, as an example in point, in many of the applications of interest, systems are

interacting with human users, and humans are not completely adversarial in general nor are

they completely random (i.e. stochastic). Hence, when either a stochastic or adversarial en-

vironment is assumed, as in many machine learning approaches, the theoretically prescribed

number of samples required to determine optimal actions are too many to achieve satisfac-

tory performance in practice and are not identifying the true underlying model. Moreover,

the approaches tend to assume statistically independent and identically distributed (i.i.d.)

observations and stationary environments, both of which are far removed from reality.

More generally, each of these domains has individually developed techniques for address-

ing the incentive design problem by making assumptions structured to allow for the tools of

their field to apply. Yet, in many practical settings these assumptions fail to hold, and this

is increasingly the case in human-in-the-loop systems and emerging markets by which we

are motivated. None-the-less, we believe that a marriage of these different approaches may

lead to new advancements in the theory of incentive design, leading to practically relevant

analysis tools and certifiable algorithms.

1.2. Organization

The rest of the article is organized as follows. In Section 2, we provide a high-level de-

scription of incentive design problems introduced with a small amount of mathematical

formalism as needed. The purpose of this section is to give the reader a formal sense of

what an incentive design problem is and what the features of an incentive design problem

are.

In Section 3, we provide an overview of the existing work that treats the incentive

design problem in the economics, control theory, and machine learning communities. We

describe at a high-level the foundation of the incentive design problem, and concepts salient

to the approaches taken in engineering and computer science, as it is formulated within

the economics community in Section 3.1. Building on this, we introduce and overview

techniques applied by the engineering and computer science communities in Sections 3.2

and 3.3, focusing on control theory and machine learning, respectively. Specifically, we

shed light on the problems each of the communities has addressed and point out how

they complement one another in an attempt to motive new work at the intersection of

these domains. Throughout the section, we introduce examples, using the three highlighted

examples introduced earlier in this section, in order to facilitate describing different features
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of the incentive design problem handled by each domain. This section also exposes parts of

the incentive design problem not treated by existing techniques in each of the three domains,

while also foreshadowing that a combination of approaches from the three domains may lead

to advancements in the state-of-the-art.

Such an overview then leads naturally into in Section 4 in which we provide a discussion

that illuminates open problems and challenges for which we believe developing tools at the

intersection of these domains may lead to solutions. We discuss our perspective on how

these approaches can be reconciled to address the new problems of incentive design with

desirable economic properties in dynamic settings with limited information. Finally, in

Section 5, we make concluding remarks.

2. A Formal Introduction to Incentive Design

We restrict our commentary to a special class of incentive design problems that has a rich

history in three core domains: economics, control theory, and machine learning. Specifically,

we focus our attention on so-called principal-agent problems (9): a class of incentive design

problems in which there are two types of participants—i.e. the principal and the agent.

Before diving into the review of incentive design as it has been studied in these three

domains, we provide a brief overview of the mathematical formalism used in the remaining

sections in support of conveying ideas relevant to the concepts introduced therein.

We use the notation JP : U × V → R for the principal’s utility and JA : U × V → R
for the agent’s utility where U and V are the action spaces of the agent and principal,

respectively. We note that there may be more than one principal and more than one agent.

To provide an example, consider the mobility market example described in the introduc-

tion. It could be abstracted in such a way that the ride-sharing platform is the principal,

and there may be many competing platforms and hence, multiple principals. A platform’s

users (i.e. passengers and drivers) are agents. The ride-sharing platform wants to maximize

revenue, say JP , which is a function of how users interact with the platform. That is,

passengers decide when and how often to solicit a ride and drivers decide when and how

often to work for the platform by accepting fares. All such possible actions form the set U .

One way to maximize revenue via increasing user participation is to offer incentives to the

two user groups. On the driver side, e.g., such incentives might be correspondences γ that

return a value v ∈ V for a weekly bonus as a function of the number of fares, say u, accepted

during the week. The platform must decide the structure of γ. It does so by noting that

given γ : U → V , users each have a utility JA(u, γ(u)) that associates a value to possible

actions U which determines their level of participation. The platform then aims to design

γ so as to induce a particular behavior on the part of the agents—that is, encourage each

of them through the incentive γ to choose an action u that leads to the platform’s utility

JP being maximized. In essence, the platform gets to influence the behavior of the users

through γ.

2.1. Formalism

As is illustrated in this example, the agent’s and principal’s utilities are coupled since they

are both functions of pairs (u, v) ∈ U × V and, thus there is a game between the principal

and agent. However, there is a specific order of play. That is, the principal announces

a mapping γ : U → V of the agent’s action space into the principal’s action space, after
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which an agent selects its action in response to the announced mechanism. Formally, γ is

the incentive mapping and, as noted, it is the goal of the principal to design γ to induce

behaviors that lead to their utility JP being maximized.

To formalize the incentive design problem that the principal faces, there are often re-

strictions on the structure of γ. For example, consider a demand response scenario in which

the principal is an electric utility company and the agent is an energy consumer. Due to

regulatory mandates, it may be very likely that the structure of incentives that the elec-

tric utility company can offer is pre-specified or the value capped. We use the notation

Γ = {γ : U → V } for the admissible set of such mappings from which the principal can

choose. Following the example, the mappings in Γ may have a particular structure—e.g.,

Γ may be defined to be the set of continuous linear maps with a specified upper and lower

bound and, as noted, it may be practically motivated such as a tariff structure imposed by

regulation.

The order of events is as follows: the principal designs γ knowing the agent has

utility JA. Then, it announces γ, after which the agent responds by selecting u ∈
arg max JA(u, γ(u)). In particular, supposing the agent is a rational decision-maker, given

an announced γ ∈ Γ, the agent aims to select an action that maximizes their utility—i.e.

u∗(γ) ∈ arg maxu∈U JA(u, γ(u)) where we denote the dependence of u∗ on γ. In this setting,

if the principal is also a rational, utility maximizing decision-maker, then their goal is to

choose γ ∈ Γ such that the agent chooses an action that leads to the maximization of the

principal’s utility—i.e. the principal seeks to find γ such that γ(ud) = vd and ud = u∗ where

(ud, vd) ∈ arg max JP (u, v). This is to say that the principal wants to incentivize the agent

to play according to what is ‘best’ for the principal. In this way, γ realigns the preferences

of the agent with those of the principal.

While there is a misalignment of objectives between the principal and the agent, if there

exists a γ such that γ(ud) = vd and ud is a maximizer of JA(u, γ(u)), then both the principal

and agent are doing what is in their best interest: the agent is ‘compensated’ via γ to play

ud and γ(ud) = vd ensuring the principal’s utility is maximized.

2.2. Challenges

Finding such a mapping is not as simple as it may seem since, in practice, there are infor-

mation asymmetries between the principal and the agent. That is, in reality the principal

and the agent make their decisions based on some information set that is available to them.

For instance, returning to the ride-sharing example, the platform may not precisely know

the drivers’ or passengers’ utilities JA. It is fairly intuitive that how individuals value dif-

ferent features that would impact their utility such as time-money tradeoffs would not be

publicly known. In fact, making things even more challenging, the users themselves may be

unaware of the precise representation of JA and may be learning their valuation/preferences

for services over time. Analogously, platform users do not have clear insight into the moti-

vations of the platform. The information that is available to the platform and users alike

plays a role in how they make decisions. How such challenges are treated by the economics,

engineering, and computer science approaches to incentive design will be formalized in Sec-

tion 3, and we specifically note in that section and Section 4, that a number of interesting

and practically relevant questions remain open.

In particular, how this information set is conceived and mathematically modeled is a

large part of what distinguishes the different approaches taken in the three domains of
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economics, control, and machine learning. In the treatment of information asymmetries,

different communities start by making some assumptions on the abstraction of the partial

information—e.g., encoded in a prior distribution or revealed over time through sampling—

which then inform the approach that is taken. There are many forms which partial informa-

tion can take depending on what is observable by the principal and the agent and when it is

revealed to them. The treatment of these informational asymmetries is varied from field-to-

field. Yet, as we elude to in Section 4, there are ample research opportunities in combining

them in an effort to derive theoretically sound and practically meaningful solutions to the

class of incentive design problems for human-in-the-loop systems.

Beyond information asymmetries, other features may arise making the problem formu-

lation closer to reality while at the same time making solutions more elusive. For instance,

the principal and the agent may also face constraints due to the physical system or en-

vironment in which they operate, the market structure which constrains their economic

exchanges, or even due to other economic considerations—e.g., ensuring voluntary partic-

ipation (i.e. agents do not opt for alternative services) or truthfulness (i.e. agents respond

in accordance with their true preferences), concepts we formalize in Section 3.1. It also

may be the case that the incentive design problem occurs repeatedly in time or is in fact

dynamic, where the actions are time dependent and the state of the environment evolves in

time. Again, how these features are formalised and treated often depends on the domain

application and the community. In the next section, we overview such approaches with the

goal of highlighting both benefits and detriments and suggesting that a merger of domains

may lead to new and interesting solution approaches.

3. A Review of Approaches to Incentive Design

In the following sections on each of the core areas (economics, control, machine learning), we

will introduce such features as they arise in the treatment of the incentive design problem.

We describe at a high-level the problems each of the communities has addressed and point

out how they complement one another in an attempt to motive new work at the intersection

of these domains. The works in these fields are too numerous to cover all of them in this

short perspective1, and hence, our approach is to highlight fundamental contributions from

these domains that apply to the types of systems—e.g., human-in-the-loop systems spanning

intelligent infrastructure to e-commerce—that we are interested in.

Specifically, from economics, we focus our review on the classical treatment of informa-

tion asymmetries. We note that the approach from economics, being the first community

to formalize the incentive design problem, lays out the conceptual building blocks on which

the other approaches are founded. Hence, the subsection on economics is written in such a

way to provide the reader with a cursory introduction to these concepts. The subsections

that follow refer back to these concepts.

From control, we focus on dynamics and the introduction of auxiliary state variables

that encode information about the evolution of the environment as it depends on agent

choices. From machine learning, we focus on adaptation and online learning. In economics

and control, models are key and they shape the flavor of a large portion of the results,

while in machine learning, the approaches are largely model-agnostic enabling scalability.

1In each of the subsections, we point the interested reader to relevant texts that summarize or
cover large portions of the work.
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Bringing these domains closer together by leveraging their successes is a great opportunity

for future research as we highlight in Section 4.

In each of the sections, we provide at least one running example, accompanied by several

smaller examples, to guide the reader through the material. These examples align with the

three examples introduced in Section 1.

3.1. Economics

The class of problems outlined in Section 2 was first studied by economists as a mathe-

matical formalisim for understanding and designing contracts between differently invested

parties each potentially possessing some private information. This asymmetric information

between the two entities is really the crux of these principal-agent problems. As we will see,

the strategic decision-making of agents in these classical settings can cause certain efficient

and desirable outcomes to be unattainable.

We remark that there is a significant body of work from the economics community

on the issue of asymmetric information and on the class of incentive design problems we

described at a high-level in the preceding section, so much so that it is impossible to review

it all. We point the reader to a handful of useful textbooks (9, 10), including one from the

control perspective (11), for that purpose.

In this section, we review the specific approaches, assumptions, and flavor of results for

the conceptualization of two core information asymmetry representations, adverse selection

and moral hazard, and their their treatment via screening and monitoring, respectively.

The purpose of selecting the particular approaches we discuss is that they complement ap-

proaches taken in control theory and machine learning, which we discuss in the sections

that follow, and we believe the particular approaches give insight into the challenging prob-

lems that remain open (see Section 4) in the development of a broader systems theory for

human-in-the-loop systems at scale.

To facilitate the introduction of core concepts, let us begin with an illustrative example.

Numerous applications in which economics techniques have been applied to the design of

incentives can be found in the wide body of literature. One engineering application where

there has been significant cross-over of economics approaches is in the energy systems area.

Example 1 (Demand Response.) In demand response programs, an energy utility com-

pany issues incentives to energy consumers to change their energy consumption patterns.

In this setting, the energy utility company is the principal and the energy consumer the

agent. The action u ∈ U chosen by the agent is the energy consumption and the incentive

program—designed by the utility company to reward the consumer for timely curtailment—is

denoted by γ ∈ Γ.

In this case, if a user’s energy consumption profile is u, then the utility company gives

incentive γ(u) = v ∈ V to the user—that is, v is the realized reward for the behavior

u. This may come in the form of cash-back rewards, raffled prizes, or discounted energy

rates. The value of this incentive to the consumer is captured in the energy consumer’s

utility, JA(u, γ(u)), which models their satisfaction with the energy consumption patterns

associated with u, and the trade-off when the offered incentive is γ(u). Put another way,

under this model, when JA(u1, γ(u1)) = JA(u2, γ(u2)), the energy consumer is indifferent

between receiving incentive v1 = γ(u1) for energy consumption u1 and receiving incentive

v2 = γ(u2) for energy consumption u2.

Analogously, the utility company’s utility, JP (u, v), models the operational costs of pro-
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viding u to the energy consumer, as well as the cost of offering incentive γ(u) = v. Often-

times these incentives γ are chosen to induce a consumption u with more energy-efficient

behaviors, or to curtail or shift some energy demand from peak hours to off-peak hours.

In practice, there is information asymmetries that cause the design of demand response

programs to be challenging. The first information asymmetry that arises is the principal’s

lack of knowledge of JA. In this example, the utility company does not know the consumption

preferences of the consumer. For example, does the consumer work from home, do they have

a medical condition that requires the temperature of the house to be higher than normal, what

energy-consuming devices does the consumer own, or are they particularly environmentally

conscious and hence, open to extreme curtailment. All of these questions are examples of

things the utility company does not know a priori. Another information asymmetry that

may arise, and is in fact common in many developing countries and parts of Europe, is the

observation of u. The consumer may spoof their energy signal in an attempt to pay less.

In many practical demand response programs, the utility company uses the historical

energy consumption as a baseline, and then issues incentives during, e.g., peak times. The

baseline is used to determine the value of the incentive, meaning users are paid based on how

much they curtail relative to their baseline. In these situations, energy consumers can use

their private knowledge of JA to their advantage. For instance, an energy consumer may

artificially inflate their baseline just prior to a demand response program event in order

to receive larger payouts under the program. Examples of this behavior have been noted in

practice (see (1), and references therein). Ideally, the utility company would like to design

incentive-based demand response prorgrams that are robust to strategic manipulation.

As illustrated in the above example, market failures—such as the incentive to artifically

inflate a baseline—due to information asymmetries can broadly fall into two categories:

adverse selection and moral hazard. Referring to the example, the utility company’s lack of

knowledge of JA is leads to the former while the lack of precise knowledge of consumption

u due to the agent having the ability to lie leads to the latter. Generally speaking, adverse

selection arises when the preferences of the agent are not known to the principal—i.e. the

principal does not have full knowledge of JA. On the other hand, if JA is known, but the

principal is unable to observe the action u ∈ U chosen by the agent, then moral hazard arises.

These two issues, and the information asymmetry scenarios under which they arise, are key

in categorizing inefficiencies that arise in problems of incentive design and the approach that

is taken. Hence, we dedicate in the remainder of this subsection to formalizing each of them

and then conclude with a short description of limitations of a purely economic approach

and desiderata for alternative approaches that build on the base economic formulation.

3.1.1. Adverse selection. As noted, adverse selection arises precisely in situations where the

principal is unable to identify the preferences of the agent. For example, as we pointed out

in the previous section, within the class of problems we consider this could be realized as the

agent’s utility being dependent on some parameter θ ∈ Θ representing the agent’s type—

that is, JA(u, v; θ) where we use the notation JA(·, ·; θ) to indicate that JA is parameterized

by θ. The agent’s type θ can abstractly encode the agent’s preferences or even their internal

state, and θ is private information. Adverse selection arises when the type is unknown a

priori to the principal.

One of the earliest and most famous papers on the topic is the 1970 paper ‘The Market

for Lemons’ by George Akerlof (12) in which the economic consequences when a used car

buyer cannot distinguish between a good used car and a lemon are considered. In particular,
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conditions are identified in which no used car sales will occur and the market will shut down.

This market shutdown can occur even when there are good used cars that sellers are willing

to sell to buyers at mutually beneficial prices. Adverse selection has been extensively studied

since this seminal work (see, e.g., (9, 10, 13, 14, 15) and references therein).

Referring back to the demand response example, as in the ‘Market for Lemons’, a

utility company may not be able to distinguish between energy conscientious users, frugal

customers, traditional users, and potential uninformed users when designing the demand

response program and issue incentives under that program. Furthermore, these users might

have something to gain by misrepresenting their type. In this case, it is entirely possible

for demand-response programs to be inefficient, just as the used-car market can unravel.

When decision-relevant information is held privately by an agent, the uninformed prin-

cipal may be able to elicit credible revelation of this private information by designing an

appropriate screening mechanism which is incentive-compatible—i.e. under the mechanism,

an agent achieves the best outcome by acting according to their true preferences. The idea

for the design of a screening mechanism is that the principal proposes a menu of contracts

containing variations of the instrument, from which the agent is expected to select the one

that aligns with its preferences. That is, the principal designs a correspondence that relates

to each possible agent type an action-value pair with an action u that the agent should take

and a payout v it will receive.

While the principal does not know the type θ, in the design of such a menu, it is typically

assumed that the principal has a priori information in the form of a prior distribution ρ

over the type space Θ which encodes their beliefs about the agent’s type. Besides the

assumption of a priori information in the form of a distribution, it is also very typical to

assume that the agent’s utility JA is concave in its actions and monotonically increasing

in the preferences. These characteristics capture the diminishing marginal utility property

and ensure that the problem is computationally tractable—in many cases, such assumptions

lead to simple analytical solutions that are easily interpretable.

The menu of contracts is designed by the principal so as to maximize their expected

utility given the prior distribution ρ. For example, when Θ = {θi}mi=1 is a finite set2, the

principal attempts to design an assignment of actions u ∈ U (e.g., amount of energy a

consumer curtails) and v ∈ V (e.g., reward for curtailment) to type θ via γ—i.e. γ(u(θ)) =

v(θ)—so as to maximize
∑m
i=1 ρ(θi)JP (u(θi), v(θi)). These assignments are referred to as

contracts and the fact that there is one contract for each of the types θi is why the term

menu of contracts is used.

This optimization problem is subjected to two fundamental constraints, incentive com-

patibility and individual rationality, which we have casually mentioned in the introduction

and more formally define here. Incentive compatibility constraints ensure that the agent

selects the contract that corresponds to his true type—i.e. if the agent’s true type is θ̄ ∈ Θ,

then his expected utility is highest for the contract γ(u(θ̄)) = v(θ̄). When Θ = {θi}mi=1 is a

finite set, incentive compatibility constraints are given by

JA(u(θi), v(θi); θi) ≥ JA(u(θj), v(θj); θi), ∀ i, j ∈ {1, . . . ,m}. 1.

That is, for an agent of type θi, the contract (u(θi), v(θi)) should be preferable to any other

contract (u(θj), v(θj)).

2The type space does not need to be finite dimensional and the treatment of the more general
case, with has the same essential formulation and features, can be found in textbooks such as (10).
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Individual rationality—also referred to as voluntary participation—constraints ensure

that the agent participates. That is, relative to an outside option, say J̄A, the expected

utility under the contract designed for each agent type is greater than the J̄A. Again, when

Θ = {θi}mi=1 is a finite set, the individual rationality constraints takes the form

JA(u(θi), v(θi); θi) ≥ J̄A, ∀ i ∈ {1, . . . ,m}. 2.

In the previously discussed demand response example, the menu of contracts would

represent different available plans for a demand-response program. Individual rationality

ensures that energy consumers choose to participate in the incentive program. Incentive

compatibility ensures that energy consumers select the contract that is designed for their

type—e.g., if the consumer is an ‘energy conscientious’ user, then the contract designed for

such users is preferable to them. In other words, energy consumers are best off when they

choose the option designed for them, and deviation only increases their cost.

One of the challenges with the incentive compatibility constraints are their combinatorial

nature: supposing that Θ has m elements, there are m(m − 1) constraints. Issues with

scalability arise frequently in these settings, and much of the work in this area is focused

on identifying assumptions which can effectively reduce the number of constraints. As

noted above, concavity and monotonicity assumptions on JA and its derivatives aid in the

reduction of constraints. For example, the Spence-Mirrlees single-crossing condition (16)

is one such assumption. In the case where Θ = {θi}mi=1 is a finite set, the Spence-Mirrlees

condition states that JA(·, v; θi+1)−JA(·, v; θi) is monotonically increasing for every fixed v

and every i ∈ {1, . . . ,m−1}. Intuitively, this means that the marginal utility of consumption

is increasing with respect to the type. Under this assumption, the number of constraints is

reduced from m(m− 1) to merely 2(m− 1) constraints. More generally, a common thread

in the treatment of the principal-agent problem with adverse selection is to identify broad

conditions that allow the system designer to pinpoint conditions on the agents type under

which it would select one contract over another.

On the other hand, in cases when the principal is unable or unwilling to create a screen-

ing mechanism, it may be at least partially in the agent’s best interest to credibly signal

their private information to the principal. Signaling mechanisms are also commonly stud-

ied in the context of adverse selection (10). In this case, it is assumed that the agent has

available to them a set of signaling mechanisms from which it selects a signal according to

its preferences. The goal of the principal is to again design an incentive mapping γ that

elicits truthful reporting and participation. For example, in a demand response setting,

environmentally conscientious users will likely gain much more satisfaction from buying

an eco-friendly thermostat than a traditional user. In an economic sense, buying an eco-

friendly thermostat costs the environmentally conscientious user less than it costs a user of

another type. Furthermore, the utility company can use this information as a signal of the

energy preferences of the consumer. If a utility company wishes to only recruit environ-

mentally conscientious users for an incentive program (e.g., if they expect this user group

to be more responsive and thus more lucrative to engage with), they can require an eco-

friendly thermostat. Then, they must design their rewards so that the rewards are positive

for environmentally conscientious users, but participation is not worthwhile for other users

in consideration of the cost of the eco-friendly thermostat.

3.1.2. Moral hazard. When the agent’s actions are hidden from the principal, then this form

of information asymmetry gives rise to the so-called problem of moral hazard. The term
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‘moral hazard’ originated from the study and design of insurance contracts. For example,

people are likely to take more risky actions once they have insurance coverage and, due to

the coverage, do not bear the full burden of the risk. Common solutions to the problem of

moral hazard include the introduction of mechanisms for monitoring the agent’s actions (17)

or sharing compensation with the agent (18).

Formally, moral hazard arises when the principal is unable to observe u, the agent’s

actions. In the formulation of solutions to this type of information asymmetry, it is typically

assumed that the principal is able to observe some event s ∈ Σ where Σ is the space of

observable events. The event s is a random variable which is a function of the agent’s

action u and some random, unknown state of nature z. In particular, the principal observes

s(u, z) ∈ Σ, and does not observe u—that is, the only knowledge the principal has of u is

through the observation s(u, z). The principal’s goal is to design a mapping γ : Σ → V

such that the agent is induced to select the desired action which is desirable from the point

of view of the principal.

Consider the demand-response setting described in Example 1 in which the utility com-

pany (principal) wishes to motivate the energy consumer (agent) to reduce their energy

consumption. Recall that v represents the reward given to the energy consumer for curtail-

ing their consumption by u under the incentive mapping γ. In this setting, we can model

the baseline consumption without any curtailment as z. The utility company does not know

how much energy the consumer would have used in the absence of any incentives, but rather

only observes the realized energy consumption, say s(u, z), which depends on the baseline

level of consumption z and the amount of curtailment u. If not properly incentivized, a

user may try to falsely claim that even though the realized energy consumption, s(u, z) is

high, that several factors caused their baseline energy consumption z to be extremely high,

and that, in fact, they curtailed a lot of energy consumption—i.e. u is high.

The order of events are as follows. First, the principal offers a contract γ : Σ →
V which commits to an action v = γ(s) for each observable signal s. The agent either

accepts or rejects the contract. If the agent rejects the contract, their payoff is the value

of their outside option, J̄A. Alternatively, if the agent accepts, then they choose an action

u∗ ∈ arg maxu Ez[JA(u, γ(s(u, z)))] and nature subsequently draws the random variable z

determining γ(s(u, z)). Then, the principal observes s(u∗, z) and the agent’s realized utility

is JA(u∗, γ(s(u∗, z))).

The principal designs γ(s) to maximizes Ez[JP (u, γ(s(u, z)))] and does so by formu-

lating an optimization problem in (u, γ) given the objective Ez[JP (u, γ(s(u, z)))]. As

in the adverse selection problem, this optimization problem for the design of γ is sub-

jected to two key constraints. First, there is the individual rationality constraint which

is given by Ez[JA(u, γ(s(u, z)))] ≥ J̄A and, as we noted, ensures the agent does not

opt-out. Second, there is the incentive compatibility constraint which is given by u ∈
arg maxu′ Ez[JA(u′, γ(s(u′, z)))] and ensures the agent chooses an action in accordance with

its true preferences given the prior the principal has on the environment—i.e. a prior dis-

tribution over z. Note that the key issue is that the contract γ cannot depend on u; as a

consequence, rather than perfect risk sharing, there is an analysis of the incentives-insurance

trade-off. Similar to the case of adverse selection, we find that assumptions are often mo-

tivated by the scale and intractability of the original problem; for example, the first-order

approach makes strong assumptions to replace the incentive compatibility constraint with

its first-order optimality conditions. There is a rich literature on the analysis of moral

hazard problems (see (9, 10) and the references therein) which seeks to solve this difficult
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problem, sometimes with further constraints.

3.1.3. Desiderata and Limitations. Fundamentally the models assume users are rational

and have significant amount of prior information, even if faced with very stylized, but

meaningful information asymmetries. They also make fairly restrictive assumptions such as

concavity and monotonicity on the form of utilities—adopted because they capture dimin-

ishing returns properties while also remaining extremely computationally tractable—which

would most certainly be violated if behavioral decision models—discussed in Section 4—

such as prospect theoretic value functions or satisficing, both of which can introduce non-

smoothness, are used in their place. The economic approach broadly allows for quite a

bit of interpretation, explanation, and generalization due to the heavy model-based tools,

yet at the same time this also causes them to not be scalable. Recent work has con-

sidered dynamic contracts which handle time-varying user preferences and environments

(see (19, 20, 21, 22, 23, 24, 25, 26) and the references therein), but the assumptions are

often too restrictive to be applied to the dynamics of an underlying state that corresponds

to a physical system3. This may be in large part due to the motivating applications that

are considered by economists such as labor or insurance markets that may not necessarily

have these features.

3.2. Control Theory

The control approach to the incentive design problem builds on the economic foundation

described in the previous subsection by offering an approach to handling the notion of

an exogenous state variable which summarizes the environment as well as dynamics. In

particular, the incentive design problem directly embodies the spirit and form of a control

problem: the principle is the controller and the agent is the plant. It is even common in

control to design the controller using some objective function—i.e. optimal control or policy.

However, unlike the typical plant structure, the agent also chooses actions by optimizing

some criteria—that is, the agent or plant is strategic itself. Models from control that

capture this sort of behavior fall under the category of leader-follower decision problems or,

synonymously, Stackelberg games (29). There is a quite a large body of literature drawing

on classical control tools to solve Stackelberg games and hierarchical decision problems,

sometimes even using the moniker ‘incentive design’ (see, e.g., (30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42)).

Before we dive into the details of these approaches, we note that as with the economic

literature review, there is too large a body of work to review here4. Hence, we focus our

review on elements arising in control that either complement the approaches from economics

already mentioned or introduce new, and interesting model features that are relevant for

human-in-the-loop systems. Specifically, we discuss how the control theoretic approach

allows naturally for dynamics and enables the introduction of a state which encodes axillary

environment information and itself may be dynamic.

3There are a few application domain specific works that do model physical dynamics; for example,
in power economics, there is work on the design of pricing mechanisms, largely in the form of tariff
structures or auctions, given some time-varying exogenous signal such as wind (27, 28).

4The series of papers (36, 37) by Olsder provides an overview of much of the work in this area
up to 2009.
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3.2.1. Example. In many of the example applications we mention in the introduction, there

is some natural environment feature that can be treated as the state—e.g., demand response

as described in Example 1, a natural abstraction of ‘state’ is the temperature of a consumer’s

home which evolves dynamically in time and impacts their energy consumption, and hence

their utility. In the following example, we present two motivating abstractions of ride-

sharing markets which not only highlight control theoretic models that allow for useful

exogenous state characterizations, but also illustrate some open problems and challenges

in incentive design problems in dynamic, uncertain contexts which we will touch on in

Section 4. As noted in the introduction, in ride-sharing markets, platform providers provide

incentives to both drivers and passengers. In this scenario, the platform serves as the

principal and there are two types of agents: drivers and passengers.

Example 2 (Incentivizing Drivers in Ride-Sharing Markets.) On one side of the

coin, passengers can be modeled as forming queues at different nodes on a graph abstract-

ing locations in the city. For instance, passengers willing to accept a ride arrive to nodes

according to a Poisson process and once they accept they are in the queue associated with

their arrival node—i.e. they wait to be matched to a driver and then wait for that driver to

arrive. Once they are picked up, they are in service.

In this model, the state xt represents a vector of queue lengths at each node. These

queues have their own dynamics, xt = f(xt, ut, vt, t) which depend on external arrivals, an

abstraction of the actions of the drivers ut (i.e. their decisions of which node to be circling

near and which fares they accept at a given time t), and an abstraction of the incentives of-

fered to the drivers vt = γ(ut) (e.g., higher prices for certain nodes or end-of-day incentives

for visiting a node more than once). One goal of the platform might be to minimize average

user wait time across nodes by incentivizing drivers to be near locations of high demand

which change dynamically throughout the day. The drivers have their own utility function

which depends on the information available to them—e.g., Ex,u[JAi(xt, ut, vt)] where the

expectation is taken with respect to driver i’s beliefs about the state of the system and the

strategies of the other drivers.

The challenge in designing incentives vt = γ(ut) is that not only does the platform have

uncertainty regarding the dynamics of the network of queues but also most certainly lacks

knowledge of the drivers’ utility functions. Moreover, drivers are strategic. For example,

they may work for multiple platforms. Websites even exist that offer strategies for drivers

to take advantage of bonus programs offered by ride-sharing platforms.

An analogous model can be constructed for incentivizing passengers in ride-share mar-

kets where drivers in the system form an exogenous state process.

Example 3 (Incentivizing Passengers in Ride-Share Markets.) On the other side

of the coin, the drivers can be modeled as forming queues at nodes in a graph representing

different locations in a city. For instance, drivers in a particular neighborhood waiting for

fares can be abstracted as a queue which gets served based on some priority rule set by the

platform—e.g., a first-come-first-serve basis such as is the case at airports.

In this framework, existing works have modeled passengers as one-off users of the plat-

form which decide to participate based on the immediate price (43). Expanding on this

model, passengers are in fact repeat customers that not only make choices about participa-

tion and usage based on the immediate price shown to them but also incentives offered to

them over time—e.g., discounts for taking a ride with a particular platform at a particular

location during an expected high demand event or for planning/scheduling a ride ahead of
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time. In such a model, the platform again acts as the principal with cost JP (xt, ut, vt, t)

at time t where xt is a vector of the driver queue lengths at each node (i.e. neighborhood)

which has its own dynamics xt+1 = f(xt, ut, vt, t), ut is a vector of choices by each users

(e.g., a zero-one vector indicating if users accepted a ride or not in a location), and vt is

a vector containing both the price at different nodes for different passengers as well as the

realized values of incentives under γ currently targeted at passengers taking actions ut.

The challenges here are similar; the platform faces uncertainties about the dynam-

ics and does not directly observe the passengers’ preferences. Moreover, passengers are

strategic—e.g., they may have an incentive to price shop, both by looking at other plat-

forms’ prices/offers as well as juking the system by searching for lower cost rides at nearby

blocks.

Of course both of these models are very abstract and in fact it might be the case that

the platform tries to simultaneously match drivers and passengers in the system which are

modeled both as strategic market participants, a model that invites many more interesting

challenges which we discuss in Section 4. None the less these examples illustrate how the

notion of state along with state dynamics can be used to abstract some exogenous process—

e.g., queue length—impacting the decision of the principal who’s efforts are focused on

incentivizing a particular user group. Such exogenous environment information and its

dynamics are captured in the modeling approaches taken by the control community.

3.2.2. Overview of Literature and Techniques. The control-theoretic approach in most cases

is first to determine what the principal can achieve with respect to its objective and both

choice variables (u, v). Then, to try and find a strategy γ that lets the principal reach this

goal by inducing the agent to play a particular strategy. In repeated or dynamic settings, it

can then be treated as a control tracking problem by formulating an auxiliary tracking cost.

This philosophy is also core to many control problems: characterize what performance is at

once desirable and achievable for a plant and then design a controller (sometimes optimal

for a given objective) that induces the plant to meet this performance objective. On the

other hand, if one does not have a sense of what the principal can achieve in terms of their

utility, very little is known (36), although the machine learning community has developed

techniques for designing algorithmic strategies for this problem in repeated or sequential

settings with limited-to-no feedback from the agent or the environment as will be discussed

in Section 3.3.

In the dynamic setting, the principal and agent both have time varying utilities and

the underlying model of the environment dynamics is a differential/difference equation. For

instance, as alluded to in Examples 2 and 3, in a discrete time setting5, the agent’s utility

is modeled as JA(xt, ut, vt) where xt+1 = f(xt, ut, vt, t) is the state dynamics and (ut, vt)

are the decisions of the agent and principal, respectively at time t. The principal’s utility

is similarly formulated as JP (xt, ut, vt). The principal and the agent both face problems of

maximizing their utility over some horizon (e.g., it could be time-averaged or discounted

and the horizon finite or infinite, both are treated in the literature).

There are two typical approaches to the leader-follower type problem: forward (alter-

natively, bilevel optimization) and reverse Stackelberg games. In the former, the principal

5There are analogous continuous time models, however, for the sake of brevity we do not detail
them.
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tries to optimize their utility subject to the constraint that the agent is selecting an optimal

action at each time given vt and xt and the subject to the dynamics. There are many works

in the control community addressing this type of problem, however the latter more directly

captures the class of incentive design problems we consider and hence, we focus our review

on existing approaches to it.

In a reverse Stackelberg game, the order of play is as follows. A principal (referred to

as leader in this body of work) announces a mapping γ of the agent’s (follower’s) decision

space into the principal’s decision space. Then, the agent determines its response. In this

case, the principal first determines a set of {(udt , vdt )}t pairs that optimize its expected

utility over the horizon. Then, they find a mapping γt : U → V that induces the agent to

choose action udt at each time t. For example, consider a T horizon problem in which the

principal and the agent both seek to maximize their expected utilities
∑T
t=0 JP (xt, ut, vt)

and
∑T
t=0 JA(xt, ut, vt), respectively, subject to the dynamics xt+1 = f(xt, ut, vt, t). Then,

the principal selects {(udt , vdt )}t ∈ arg max
∑T
t=0 JP (xt, ut, vt), after which they select a γ

in the following set:

M(T ) =
{
γ ∈ Γ

∣∣∣ γ({udt }t) = {vdt }t,

{udt }t ∈ arg max
{∑T

t=0 JA(xt, ut, vt)|{vt}t = γ({ut}t), xt+1 = f(xt, ut, vt)
}}
. P-1.

One such mechanism might be, e.g., a sequence {γt}t such that γt(ut) = vt.

The reverse Stackelberg structure of play, as compared to the forward Stackelberg game,

allows for the principal to design a mapping γ : u 7→ v as opposed to simply just the

response v and hence, affords the principal more influence over the behavior of the agent.

This revelation lead to defining the term incentive controllability (33), a loosely related

concept to incentive compatibility in the sense that the objective is to characterize when it

is possible to control the agent to a desired choice. This structure of play also allows for

the introduction of multiple, non-cooperative agents where the principal’s objective is to

coordinate them around a set of choices which is ‘best’ from its point of view (35, 36, 37, 44,

45). In dynamic case, a significant number of works from the control community address

the problems of incentive controllability and multiple agents within a very specific class

of system dynamics and costs (i.e. linear quadratic) that are well-explored. For instance,

assuming linear dynamics and quadratic costs, there have been several efforts focused on

characterizing the solution (e.g., existence and uniqueness) to the reverse Stackelberg game

and reducing the problem of finding it a convex optimization problem (31, 32, 33, 35,

37). Other efforts have relaxed the linear assumption on dynamics and similarly seek to

characterize local equilibria (44).

The reverse Stackelberg structure is also amenable to situations of partial information

where, e.g., the principal or the agents lack information about the state, others’ actions, or

even the utility functions of others. For instance, referring back to Example 2, the platform

may not know drivers’ preferences regarding which node they would like to finish working

at or how long they intend to work. And, in either Example 2 or 3, they may also not know

the arrival rates of drivers or passengers in the respective queue models, and hence, have

partial information about the state dynamics.

Efforts have also been made to address the partial information case (see, e.g., (33, 34,

46)). With the exception of a few recent works6, these approaches tend to not identify the

6As with the economics literature, from the control community there are application driven
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lack of information as adverse selection and moral hazard despite the fact that the form of

information asymmetry is the same and the approach that is taken in the event of partial

information is often very different. In particular, given the dynamics, in the face of partial

information, agents can form estimates and propagate priors using the observations they get

over time. Some recent approaches have begun to develop learning algorithms leveraging

techniques from adaptive control, game-theoretic learning, and reinforcement learning to

design incentives in the face of partial information (48, 49, 50). These approaches take the

view that the principal lacks some information about the decision-making process of the

agents, impose a model structure on the aspect of the decision-making process they lack,

and then try to make inferences about this model structure.

For instance, in a repeated, one-shot game scenario in the absence of an auxiliary

state, (50) treats the case of adverse selection in which the principal does not know the

agent’s utility function JA(x, u, v; θA), but knows that it belongs to some class of functions

F(θ). Specifically, the principal finds (ud, vd) ∈ arg max JP (u, v) and seeks to induce the

agent to play ud by repeatedly offering incentives to them. Since θA is unknown, instead

of designing a menu of contracts with respect to a prior, the approach is to maintain

and update an estimate of θA which is then used to adaptively design a sequence {γt}t
with the goal of ensuring the agent’s action asymptotically approaches the desired action—

i.e. ut(γt)→ ud. Under the assumptions of zero-mean, finite-variance, i.i.d. noise and stable

and persistently exciting dynamics—the latter of which is very difficult to verify—such

results can be obtained. Relaxing the conditions, it is also possible to obtain asymptotic

guarantees ensuring that ut ∈ Bε(ud)—i.e. an ε–neighborhood around the desired action.

In general, the typical control theoretic approach in the case of partial information is

to assume a model structure, construct an estimator or inference method, and design γ

based on its output. And, the typical analysis and results have the flavor of almost sure,

asymptotic guarantees. In practice, this may be limiting as systems with many agents and

non-stationary environments may not reach a steady-state very quickly or at all. Moreover,

while the efforts from the control community form a very rich set of tools that address a

number of the challenges which motivate this article including dynamics in the decision-

making process, the inclusion of an auxiliary state, and partial information, the techniques

are very heavily model-based, they assume very significant problem structure and the re-

sults, particularly in the partial information case, are often limited to very specific problem

classes such as linear-quadratic problems with stabilizable, detectable dynamics and Gaus-

sian noise. It is also the case that when there are uncertainties or partial information, the

distributions are assumed known a priori thereby making the estimation problem much

more tractable to solve, when in practice this information is rarely available.

3.3. Machine Learning

Approaches from the machine learning community tend to be less model-based than those

in the control or even economics communities, and hence the results and techniques are

complementary. Indeed, in recent years, there has been an increasing interest in studying

adaptive incentive design problems through the lens of online learning. This line of inquiry

looks at repeated principal-agent interactions where the principal faces some uncertainty

works—e.g., in the area of power systems/smart grid—that have been looking at contract design
where there is adverse selection and moral hazard (see, e.g., (47)).
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regarding the preferences or actions of the agent. The objective of the principal in the

problem is to design a policy γ that determines the best action to play at each interaction

with the agent using only the information that has been amassed prior to each respective

interaction. The assumptions on the information available to the principal a priori and

what is revealed to them over time informs the algorithm design; in fact, the mathematical

formalism encoding what feedback is received by the decision-maker after an action is taken

is a key attribute of how methods are devised in sequential decision-making problems more

broadly.

As noted, in comparison with the approaches taken in the economics and control theory

literature, the methods developed in online learning lean more towards model-agnostic than

model-based. That being said, predominantly, the literature on online learning has focused

on direct optimization problems that do not capture economically motivated constraints

such as incentive compatibility, individual rationality, or preferences that evolve in time.

As a prelude to discussing how the online learning lens can be used for adaptive incentive

design, we first describe the traditional framework under which such problems have been

studied in the literature. The canonical online learning model considers a sequential game

between a decision-maker and nature over a finite time horizon T . At each round t of the

game, the decision-maker selects a move vt ∈ V and simultaneously nature takes an action

zt ∈ Z, following which the decision-maker receives utility J(zt, vt). The decision-maker

seeks to maximize the utility at each round so that the cumulative regret over the horizon,

defined as

RT = supv∈V
∑T
t=1 E[J(zt, v)]−

∑T
t=1 E[J(zt, vt)], 3.

is minimized. Note that the per-round regret compares the action taken by the decision-

maker with the best action that could have been taken in hindsight.

The literature and techniques developed for this problem can be broadly classified on

the basis of the feedback observed by the principal after selecting an action. In traditional

online learning, the underlying assumption is that the decision-maker is able to observe

nature’s move (zt) and hence, the utility J(zt, vt) for all vt ∈ V , even those actions in V

not selected by the decision-maker. In contrast, a parallel stream of literature has studied

online learning in the presence of bandit feedback, where the decision-maker only observes the

utility J(zt, vt) for the action taken (vt) and uses this information to shape future actions.

The need for limited feedback can arise in many applications such as online ad placement

where the decision-maker only observes whether or not the user clicked on an advertisement

(i.e. J(zt, vt) ∈ {0, 1}), and not the user’s underlying features (i.e. zt). Finally, an alternative

distinction in the literature stems from the source of the action zt adopted by nature: in the

stochastic model, zt is drawn i.i.d. from a distribution, whereas, in the adversarial model,

zt is arbitrarily chosen.

Fortunately, there are well developed, near-optimal learning strategies in each of these

environments. In the stochastic model, upper confidence bound (UCB) index policies (51)

are ordinarily adopted, while in the adversarial model, multiplicative-weights-based policies

(52, 53) are employed. The index policy stores a UCB index—i.e. the sum of the empirical

mean of rewards experienced and the confidence width—on the empirical mean utility of

each available action and plays the action with the maximum index. The crucial philosophy

underlying these policies is that of balancing exploration and exploitation—i.e. continuing

to learn about the utility of each action to minimize long-term regret while simultaneously

focusing on the most promising actions to minimize short-term regret. On the other hand

in multiplicative weights, a probability distribution over actions is maintained and updated
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using a multiplicative weights update rule based on the observed utility each time an action

is taken. At each round, the action to play is sampled at random from this distribution.

For more a comprehensive coverage of such online learning approaches, see (54, 55, 56).

Many of the applications mentioned in the introduction as well as in other domains

such as digital marketplaces—e.g., crowdsourced systems, recommendation engines—are

characterized by repeated principal-agent interactions where the principal must design a

policy to induce strategic agents to coordinate around actions that ultimately maximize the

principal’s own utility and do so in the face of environmental uncertainties and informational

asymmetries. The traditional model of online learning model does not directly capture

principal-agent interactions where individual agents act based on their own self-interest.

However, there are very promising attempts at extending it to take into account the agency

available to individual agents (see, e.g., (57, 58, 59, 60, 61)). Indeed, the online learning

model above can be extended to a multi-round principal-agent, in which the decision-maker

is the principal, by allowing the principal’s reward at each round to not only depend on

their action and the realization of the state of nature, but also on the action ut of an agent.

Formally, in the most basic formulation, a multi-round principal-agent problem can be

described as follows. At round t, the principal selects an action vt ∈ V , zt is realized,

and then the agent selects ut ∈ arg maxu∈U E[JA(zt, u, vt)]. The principal then receives

per-round utility JP (zt, ut, vt). It is typically assumed that the principal is not aware of

the agent’s private type and utility function, and sometimes, not even the agent’s selected

action ut
7. Hence, one can imagine either issue, adverse selection and moral hazard, being

addressed via online learning approaches that leverage only the information known a priori

and the feedback that has been obtained. The goal of the principal is to find a policy γ

(usually an algorithm) that minimizes a regret notion over a finite horizon by determining

the best action from V at each round, given information up to that round. Given this

setting, the goal of many works in this area, is to provide finite time bounds on regret.

3.3.1. Example. As previously mentioned, problems arising within the realm of digital mar-

ketplaces are increasingly being modeled as repeated principal-agent interactions. A promi-

nent example in recent years is crowdsourcing. In general, crowdsourcing is the practice

of soliciting contributions in the form of services, content, etc. from willing participants of

the online community. In the example that follows, we describe an application of crowd-

sourcing involving two self-interested parties that captures many of the salient aspects of

the repeated principal-agent problem—strategic interactions, adverse selection, and moral

hazard—and demonstrates how the problem can be solved using techniques from online

learning.

Example 4 (Crowdsourcing.) Crowdsourcing platforms such as Amazon Mechanical

Turk (MTurk) are designed to match available workers with tasks to complete. The func-

tionality is simple: a requester posts a task as well as the amount they will pay for the

completion of the task; a worker can then choose to do the work and upon completion is

paid the specified amount. While the advent of these systems has provided an inexpensive

and on-demand workforce that was once unavailable, it has been well documented that the

quality of the crowdsourced work can be highly variable (62, 63, 64). Taking this into ac-

7A notable exception is the work on contextual bandit approaches for online decision making
when in addition to the per-round reward, the decision-maker gets some additional contextual
information—e.g., observation of some auxiliary state or type information.
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count, we model the task of incentivizing high quality contributions from workers using the

framework of online principal-agent interactions.

We consider a principal (requester) who wants a set of tasks completed via a pool of

agents (workers) crowdsourced through (say) MTurk with maximum quality at minimum

cost. To incentivize high quality contributions, the principal seeks to design a policy for

sequentially selecting a payment mechanism, consisting of a base payment and a quality-

contingent bonus payment, to offer an agent for completing a task. The principal-agent

interaction at each time t ∈ T is as follows: the principal selects a payment mechanism

γt : Q→ V from a finite set Γ that is a mapping from a quality to a payment for a task, an

agent of type zt is matched to the task, and this agent completes the task with effort level

ut ∈ U . The type of an agent is modeled to be drawn from a stochastic distribution at each

time and may represent attributes such as skill, dedication, etc. Moreover, the amount of

effort an agent expends is strategically chosen to maximize the expected value of the utility

function given by the payment from the principal minus the cost of the effort exerted. In

our notation, the utility function of the agent is JA(zt, ut, vt) = vt− ct, where vt = γt(qt) is

the realized payment from the mechanism, qt = f(ut, zt) represents the quality of the work,

and ct = g(ut, zt) denotes the cost the agent incurs completing the work in terms of time

spent, energy loss, etc.

Following the principal-agent interaction, the principal observes (only) the quality of

the work, pays out the realization of the payment mechanism, and can use the information

obtained to adjust the policy for selecting payment mechanisms. The utility that the principal

receives from an interaction with an agent is the value of the work minus the payment made

to the agent. That is, JP (zt, ut, vt) = rt−vt, where rt = h(qt) denotes the value derived from

the quality of the work and recall vt = γt(qt) is the realized payment from the mechanism.

The goal of the principal is to maximize the expected utility obtained from a policy over

a finite horizon. Equivalently, the principal seeks to learn a policy that can minimize the

cumulative regret defined as follows:

RT = supv∈V
∑T
t=1 E[JP (zt, ut, v)]−

∑T
t=1 E[JP (zt, ut, vt)].

Each payment mechanism available to the principal has a stochastic distribution on the

utility that the principal will obtain. This means for each γ ∈ Γ, there exists a mean µ

such that E[JP (zt, ut, v)] = µ. This is since each agent selects actions to maximize the

expected utility and the agent type is drawn i.i.d. from a stochastic distribution. Hence, the

problem of learning a regret minimizing policy for incentivizing high quality contributions in

crowdsourcing can be reduced to a stochastic multi-armed bandit problem. The UCB policy

is a near-optimal strategy that could be applied to solve the problem. In short, the principal

would select at each time the payment mechanism which had the maximum UCB on the

empirical mean utility obtained from the payment mechanism being offered to agents in the

past.

The crowdsourcing example captures important aspects of online principal-agent de-

cision problems including strategic behavior, adverse selection, and moral hazard. For

instance, adverse selection and moral hazard can occur as the principal does not directly

observe the type (utility function) or action (effort level) of the agent but only the final

quality of the work. Under the assumptions on the users and the environment as presented,

a near optimal strategy could be directly obtained using a well known multi-armed bandit

algorithm.
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The above example does not completely capture reality, however. It assumes that

workers are one-off participants in the system—that is, they only interact with the system

once. Moreover, worker types are assumed to be drawn i.i.d. from a stationary distribution,

when in reality the agent would likely have memory and their responses in each round

would depend on the previous actions of the principal. Several recent works, many in the

crowdsourcing context, have started to address some issues related to the incentive design

problem (5, 6, 59, 60) For example, the crowdsourcing problem presented above is closely

related to the work of (5) on bandit algorithms for repeated principal-agent problems,

but the authors of that paper extend the formulation presented so that the set of payment

mechanisms being considered can be extremely large or even infinite while obtaining similar

performance guarantees. However, there is still many open problems related to handling

repeat users whose preferences—and hence, behavior—depend on the actions taken by

the principal. The available tools from online learning will need to either be extended or

integrated with existing approaches from the economics and control theory literature as we

discuss further in Section 4.5.

3.3.2. Overview of Literature and Techniques. Going beyond the most basic formulation,

as earlier noted, the principal may also face constraints on their budget (this could be a

per-round budget or coupled over time) or desire that agents participate (individual ratio-

nality) and be truthful (incentive compatibility). There have been a handful of approaches

that address one or more of these constraints for the principal-agent problem in the online

learning setting (65, 66). In the crowdsourcing example discussed earlier, the set of feasible

payment mechanisms that can be offered by the principal may be limited by the principal’s

initial monetary endowment—i.e. total budget. Incentive compatibility, for the same exam-

ple, could refer to the notion that the agent’s utility is maximized when their effort level is

aligned with maximizing the quality of the work subject to costs incurred—e.g., see (6, 59).

A prototypical example of incentive-compatible online learning can be seen in the works

pertaining to two-sided markets with sellers (principal) and buyers (agents). The literature

in this domain can be divided into two distinct streams (67): (i) online posted pricing

mechanisms where the principal seeks to learn an optimal set of prices for each good, and (ii)

truthful online auction design (68, 69, 70) which could involve complex interactions between

the entities (e.g., multi-round bids). We focus on the former as it falls under the broad

umbrella of incentive design where the prices serve as incentives to guide buyer decisions.

Early work in this area (71) concentrates on single-item markets with limited supply and

developed dynamic pricing algorithms that extended traditional work in online learning to

the pricing problem by discretizing the action space and proposing new index policies based

on greedy selection. In follow-up works, many of these regret bounds were extended to

settings involving fixed budgets (6) and multiple goods (72, 73). The latter works exploit

the correlation across goods to limit the exploration phase, which could potentially be large

owing to the exponential size description of agents’ utility functions. Although these papers

focus only on markets, their techniques have yielded new insights on online learning where

the principal’s actions are coupled across time, e.g., due to a finite budget.

While markets wield prices in order to influence the behavior of myopic agents, most

digital platforms pursue alternative means to incentivize agents to explore unknown actions

without sacrificing incentive-compatibility. In this regard, a line of research has focused on

designing both monetary (74, 75, 76) and non-monetary incentives (61, 77, 78) in an online

fashion to promote exploration. Particularly notable is the design of signaling strategies as
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in (61, 77) that offer information as an incentive to converge to welfare-maximizing out-

comes. Although it is typical to consider asymmetric information structures in favor of the

principal, a few works have looked at settings where the agent possesses an informational

advantage (59, 79, 80). Here, the goal is to incentivize agents to reveal their private in-

formation or beliefs in a truthful manner. Broadly speaking, the incentives proposed in

this line of work can be classified as dynamic contracts, that extend the techniques from

Section 3.1 to an online environment. We refer the reader to (5) for a detailed exposition

on the subject.

These works, however, tend to make the strong assumption that agent behavior is in-

dependent of time—that is, their preferences are static and not influenced by, e.g., the

incentives offered by the principal. Moreover, it is assumed that the behavior of each in-

dividual agent is independent of the behavior of all other agents. It is worth mentioning

several works that have considered dynamic agents or eschewed the independence assump-

tion. Dynamic agents were considered in (81); a repeated principal-agent interaction was

constructed to model the problem of a seller learning auction prices to maximize long-term

revenue while a buyer strategically attempts to maximize their own long-term profit. An

analogous principal-agent approach was taken in (82) with the extension to several agents,

each of which when selected receives utility that it can strategically share with the prin-

cipal in order to maximize their utility over the horizon, while the principal concurrently

attempts to maximize utility received from the agents. Recently, a variant of the principal-

agent problem was considered where the agent’s preferences evolve in time according to a

Markov chain and the principal’s actions impact the evolution dynamics (57); this is one

of the first attempts to address non-stationary environments in principal-agent interactions

in that the same agent repeatedly interacts with the principal and the principal’s actions

influence that agents behavior so that from the point of view of the principal, the envi-

ronment is non-stationary. In particular, there is a single stochastic process that evolves

and hence, the actions are dependent on one another. This work was further extended to

the combinatorial setting (58), where at each round the principal must match incentives to

agents given budget constraints.

We remark that, at present, the online learning literature with dynamic agents or sources

of dependence is relatively unfocused with many important open problems. Accordingly,

there has been a limited amount of work considering incentive-compatibility when agent

behavior is correlated with time or dependent on the actions of the principal. For example,

in the crowdsourcing setting mentioned earlier, an agent who interacts with the principal

for multiple rounds may seek to benefit by resorting to low effort levels if it can influence

the payment mechanism offered in subsequent rounds. Clearly, there is potential to extend

work in the online principal-agent domain to capture richer agent behavior and dynamics

in future work.

One particular feature of the online learning literature that differentiates it from the

adaptive control and learning techniques briefly mentioned in Section 3.2 is that most

works—in particular, those providing solutions to a variant of the principal-agent problem—

assume the action space of the principal is a finite set. And, very often these works create

benchmarks based on the single best action in the set independent of time as in Equation 3.

This is largely due to the fact that in the online learning literature, the view of incentive

design that tends to be formed is a repeated interaction between the principal and the

agent versus a dynamic or sequential interaction where the utilities are dependent on time

(e.g., through some exogenous state variable or time dependent components of the utilities).
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None-the-less, the techniques allow for the design of algorithms with performance guarantees

for adaptively designing incentives given very little a priori information and feedback over

time. This motivates, perhaps, a rapprochement between online learning techniques and

those from adaptive control.

4. Open Questions and Research Opportunities

Having overviewed the various approaches to different formulations of the incentive design

problem from the communities of economics, control, and machine learning, we now provide

our perspective on a number of interesting open problems which have not been completely

solved by any one of the individual communities, but through an interdisciplinary approach

we may find solutions.

While there has been a lot of work addressing different formulations of and aspects

of the incentive design problem, it is still an open problem to solve incentive design with

repeatedly returning agents whose decision-making processes evolve with time and are func-

tions of the principal’s actions—thus, making the environment the principal interacts with

non-stationary—and where the principal faces moral hazard and adverse selection type in-

formation asymmetries, is subjected to constraints (e.g., on their budget over time or due

to a surrounding market structure), or is exposed to some external context (i.e. physical

system dynamics or exogenous observations of the environment). The agents may also

compete or have a more complex interaction structure amongst themselves. There may be

more than one principal, adding an additional layer of complexity. These are all challenges

in practical realizations of the incentive design problem which have yet to be sufficiently

addressed. In the remainder, we discuss opportunities and additional challenges where we

we believe potential solutions are on the horizon for research in this area.

4.1. Bounded Rationality and Risk-Sensitivity

A common thread across the disciplines cited previously is their supposition that the princi-

pal and the agents are rational entities that unambiguously favor strategies that maximize

their expected utility. In reality, it is well understood that human decision making is bound

by various cognitive limitations. Indeed, the rise of digital marketplaces has led to a renewed

focus on the field of behavioral economics, pioneered by Nobel laureates such as Kahneman

(and his collaborator Tversky) (83) and Thaler.

The interaction between human cognitive biases and incentives aimed at rational agents

has led to the emergence of perverse incentives that achieve unintended, often adverse

consequences. For example, in the domain of urban transportation, city officials who enforce

zone-based congestion pricing in a bid to ease traffic may observe that these incentives often

have only limited or even negative impact on overall congestion (84, 85). This occurs because

the congestion pricing tariffs do not take into account the time-money trade-offs among

users and secondly, drivers get acclimated to the increased prices (e.g., due to anchoring

bias (86)). Further, such schemes may achieve the unintended effect of raising home prices

inside the congestion zone as residents pay higher prices to avoid road taxes (87), e.g., due

to loss aversion (86).

Many works, too many to cite, have sought to address these issues by introducing

more realistic utility functions that capture several aspects of human behavior—this could

include risk sensitivity, loss aversion, and reference point dependence, among other pertinent
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behavioral decision-making features. Such non-linear utilities are a core component of

the famed prospect theory (86, 88). Alternatively, other decision-theoretic models such

as satisficing (89) capture myopic behavior such as choosing the option that first meets

an agent’s minimal criteria. These works provide strong preliminary support. They tend

to be rather simplistic and their empirical validation has largely been limited to static

decision-making problems between two outcomes. There is still significant work to be

done in extending and integrating these models (or at least the salient features that well-

model human decision-making) in an incentive design framework, particularly in large-scale

systems with many agents and dynamics.

With this in mind, a promising direction for future work involves leveraging recent

advances in neural networks, deep learning, and classical results from inverse learning to

infer (potentially) non-linear models of how humans respond to various incentives under a

repeated interaction model (90, 91, 92, 93, 94, 95). A significant challenge is to develop tech-

niques for model agnostic, scalable learning which results in explainable and interpretable

outcomes. An alternative approach to tackling the problem of bounded rationality is in

the design of robust incentives that achieve desirable outcomes irrespective of how agents

behave. Although such approaches are preferable to model-specific incentives, they are,

predictably, limited by their efficacy and they tend to result in very conservative strategies.

4.2. Information Design: Leveraging Uncertainty for Good

Uncertainty is an unavoidable aspect of not just physical systems but also digital systems

involving human behavior. Almost all of the works on human decision making under un-

certainty pertaining to incentive design consider uncertainty as an adverse phenomenon—

indeed, it is intuitive to believe that suboptimal decisions are an obvious by-product of

uncertainty. This raises a very natural question: are there situations in which one can de-

sign incentives that perform better under uncertainty when compared to more deterministic

environments?

Surprisingly, in a number of settings, uncertainty does help in the design of more effective

incentives; e.g., in transportation networks, the overall congestion can be decreased when a

principal carefully calibrates the level of information available to each user (96, 97, 98). The

intuition for this phenomenon comes from the fact that, in certain cases, incentives exist

that close the gap between user selected equilibrium and social welfare maximizing equilib-

rium (e.g., the existence of optimal tolls in routing games is demonstrative); consequently,

there must exist settings in which uncertainties cause users to behave more like the socially

optimal solution. Indeed, in (96), the authors cast the classic Braess paradox (99)—which

says that, under certain conditions, adding links to a network can increase the total con-

gestion felt by users when they behave in a self-interested way—in light of informational

uncertainties and highlight that in many networks, the average travel time could decrease

when users are only aware of some routes (as opposed to having perfect information about

all of the routes). More generally, in the face of uncertainty, a conservative user tends to

over-estimate the delay on some paths—this could lead to ‘less crowding’ on popular routes

and a balanced distribution of traffic (97). The surprising effects of uncertainty can also

be seen in security allocation in airports (100), energy markets (? ), and recommendation

systems (61).

In light of these counterintuitive results, there are a number of important avenues in-

cluding:
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(Leverage Uncertainty in Incentive Design). The positive effects of uncertainty as ob-

served in some scenarios motivates the development of a new theory of incentive design

that deviates from the norm by explicitly leveraging uncertainty as a positive effect in

decentralized systems.

(Information as an Incentive). Information or uncertainty can itself be thought of as a

design feature thereby motivating the development of methods for using information as

an incentive (61, 77, 101, 102) which enables a principal to control the level of uncertainty

of the various agents to achieve a more desirable outcome.

(Co-Design of Incentives and Information). In many cases, what is achievable with

incentives may not be achievable with information shaping and vice versa. This motivates

deriving a theoretical and computational framework for the co-design of incentives and

information that lead to a quantifiable improvement in performance while mitigating

unintended consequences.

Central in each of these avenues is the design of information is some form. Yet, information

design leads to the technically challenging question of whether information design can be

achieved without unfair discrimination.

4.3. Fairness

In online learning, as with most of incentive design, it is typical to focus solely on algorithms

that maximize social welfare over a finite horizon (e.g., in terms of regret). A notable

exception involves the work on mean-variance optimization in online learning (103, 104).

In systems comprising of multiple independent entities (principal, agents, etc.), it is well-

known that maximizing the utilitarian welfare does not necessarily lead to egalitarian or

equitable outcomes. These implications are exacerbated in multi-agent incentive design

problems where a principal may offer vastly different incentives (or information) to different

agents leading to contentions about unfair treatment by individual users or communities,

e.g., dynamic pricing of parking and other public facilities can systematically disenfranchise

populations in high-demand environments (105, 106).

Motivated by this, an impressive body of work in recent years has looked at online

algorithms that learn the preferences of agents without sacrificing fairness—according to

one or more metrics such as envy-freeness (107, 108), statistical parity (109), individual

fairness (110), maximin fairness (111). A possibility raised by many of these works is that

achieving fair outcomes may be intrinsically misaligned with maximizing social welfare.

Despite these constraints, a number of promising research directions warrant exploration:

(Approximations and Trade-Offs). Given that achieving fairness may be incompatible

with maximizing welfare, a reasonable compromise is to approximately maximizing effi-

ciency while retaining fairness (112). Such an approach could then naturally segue into

a thorough characterization of the efficiency-fairness Pareto frontier (113).

(Long-Term Fairness). While fairness may be harder to guarantee in a one-time inter-

action between a principal and agents, repeated interactions provide an opportunity for

the designer to implement solutions that are equitable over a longer horizon (e.g., the

average amount of perceived unfairness approaches zero over many interactions). An

important open question is to identify algorithms that satisfy this property. Preliminary

results support the hypothesis that long-term fairness may be easier to achieve without

compromising social efficiency (114, 115).

(Model-Based Fairness). Almost all of the works mentioned above consider a typical
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design or optimization problem and add fairness as an external constraint. In many

settings, it may be more natural to embed fairness directly into the model as in (116).

e.g., a sequential game where self-interested agents maintain fidelity levels for various

principals based on the perceived unfairness of the incentive received.

The ubiquity of incentives in society and the adverse socio-economic implications of

algorithmic discrimination make it imperative that researchers include fairness in the design

process and not simply as an after-thought. Fortunately, healthy discussions by a diverse

range of academic communities and industry practitioners provide an encouraging sign

that fairness-based constraints will play a key role in developing learning policies in the

future (109, 117, 118, 119). Inherent in the quest for fairness in online learning is a trade-

off with efficiency, which has been shown to be quite costly (113). In some problems with

certain fairness criteria the steep loss in efficiency is unavoidable, it remains to be seen

whether new learning approaches and fairness metrics can be developed to mitigate the

cost of such a trade-off.

4.4. Interaction Between Markets: Cooperation to Competition

In the principal-agent problem, it is typical to consider settings where a single principal

interacts with self-interested agents or multiple principals interact with different agents in

isolation. Incentive design for such systems often relies crucially on the assumption that

either there is no external option available to the agents, or that the external option does

not interact or compete with the offers the principal is making. On other hand, in the case

of digital marketplaces, it is more often the norm that agents have a choice between multiple

principals particularly in repeated interaction settings; e.g., drivers and passengers selecting

between different ride-sharing platforms or customers switching between ticket booking

portals. It is customary to expect each principal to design independent incentives for its

users to increase adoption. This begs the question: how robust are current mechanisms

to the presence of external competition and how does one redesign incentives to take into

account competing principals or even platforms?

On the one hand, there exists a considerable body of literature that explores competi-

tion in the field of market design, industrial organization, and game theory. For example,

economists have long studied the problem of competition versus innovation (see (120) and

references therein)—i.e. how does the level of competition in the market affect the type of

incentives received by the agent? On the other hand, in repeated interaction settings fea-

turing multiple principals, our understanding of how competing incentives and externalities

affect agent behavior is rather limited.

An urgent need, therefore, is to gravitate towards a broader theory of incentive design

via online learning that is cognizant of competition between providers—perhaps leveraging

techniques from economics and control theory to model multi-agent interaction—without

being too sensitive to the strategies adopted by other principals (121). At the same time, it

is imperative to understand how current learning approaches perform as more participants

enter the market (4). For example, preliminary results (122, 123) indicate that in the

presence of competition, markets could ‘get stuck’ at a bad equilibrium where all of the

principals play greedy strategies without performing sufficient exploration. A key research

direction therefore is the design of upstream incentives that motivate principals to pursue

policies that are aligned with the social good; e.g., in ride-sharing markets, a regulatory

authority could impose upper caps on the price paid by consumers and lower caps on the
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revenue guaranteed to drivers.

A closely related issue that has raised concerns from anti-trust policy makers (124) and

algorithm designers alike is that of algorithmic collusion (125)—scenarios where multiple

algorithms representing independent principals (sometimes unintentionally) interact with

each other to yield socially undesirable solutions. The problem is particularly acute in

the field of automated pricing, where competing algorithms could engage in concurrent

price increases resulting in poor social welfare. In light of these serious risks, it is critical

that designers reexamine the classic approaches for developing incentives to identify which

algorithms are more susceptible to collusive behavior (e.g., see (61)).

4.5. Integrating Model-Based Approaches into a Model-Agnostic Regime

The economic and control theoretic incentive design approaches that have been discussed

are overwhelmingly model-based. Owing to this paradigm, several advantageous proper-

ties exist including strong performance guarantees and explainable outcomes. However,

these techniques often do not scale well and may not be applicable in problems for which

significant a priori information is unavailable.

On the contrary, online learning methods are predominantly model agnostic in that,

from the point of view of the principal, very little is assumed about the agent. Moreover,

for each of these cases, algorithms exist which are near-optimal under the limited assump-

tions. Yet, since correlation or structure is not being exploited, the near optimal guarantees

may still be relatively weak or unattainable in large-scale environments. To give a concrete

example, the standard upper confidence based and near-greedy algorithms in online learning

(51) require the principal to take each possible action before any learning begins. In prob-

lems with many possible actions (e.g., selecting advertisements and item recommendation),

it is clear that such an approach would be unrealistic.

To overcome such deficiencies, standard online learning techniques have been augmented

with stronger assumptions and endowed with model-like structure, consequently improving

sample efficiency and the ability to generalize. Despite the exciting progress in this area,

by and large these methods have not extended to the online incentive design problem which

has several further challenges including information asymmetries between the principal and

the agent and non-stationarity in repeated interactions owing to agent behavior. In the

rest of this section, we present models that have been imposed on the traditional online

learning framework and consider how they may be promising in future work towards online

incentive design.

A prominent example is that of online stochastic linear optimization with bandit feed-

back (126, 127), which models the cost of the principal to be a linear function of the actions

taken with initially unknown parameters. Such an approach is advantageous as the deci-

sion maker can learn the cost of each action by solely learning the parameters of the linear

function. Although this problem is more difficult to analyze technically, due to the loss

of the standard independence assumption, the ability to leverage correlations between ac-

tions and the structure of the model makes this method interpretable and scalable (128).

There is a related line of work examining how a priori knowledge of a similarity struc-

ture between actions can be leveraged in the online learning setting (129, 130, 131, 132).

Certainly, considering the principal’s cost in the incentive design problem to be a linear

function of a selected agent would raise compelling questions. It would also be intriguing to

investigate how knowing that groups of similar agents existed could be leveraged to speed
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up incentivizing agents.

As opposed to a purely optimization approach, probabilistic online learning methods

which leverage priors on the distribution of costs, such as Thompson sampling (133, 134)

and Gaussian process optimization (135, 136), have received increased attention in recent

years and have shown to be empirically effective. These methods could be used for incentive

design in several ways, including the principal maintaining distributions over parameters

modeling agents’ behavior, and agents updating priors on the principal’s behavior for strate-

gic purposes. Connecting back to Section 4.1, we note that maintaining layers of beliefs

also allow for bounded rationality interpretations of the behavior exhibited by agents.

In practice, it is often the case that any of the aforementioned structures are combined

with side information or context that is available to the principal when making decisions

(128, 137, 138, 139). Relating back to the control perspective, one may relate context in an

incentive problem to be some observation of the state of the environment. In this way, the

principal can leverage the extra information to learn more fine-grained policies. Drawing on

the ideas of context and information exchange from online learning is ripe for exploration

in the incentive design problem.

In the online learning community, performance is often analyzed using the metric of

competitive ratio (140, 141, 142), which gives the ratio of the online learning optimum to

the offline full information optimum. Future work in incentive design may benefit from

assimilating such analysis. Essentially, in the incentive design problem, a competitive ratio

would inform the value of a priori information. If this were known, it may give insights into

cases where acquiring information and applying model based methods may be preferable to

model agnostic methods or vice versa.

As standard online learning frameworks are endowed with increasingly complex assump-

tions and structures, they begin to edge closer to and obtain the favorable aspects of the

model-based methods in economics and control, while at the same time maintaining scal-

ability and the ability to learn in a sample efficient manner. However, only a select few

works (60, 143, 144, 145) have focused on applying these richer methods to the incentive

design problem. Owing to this, there is significant opportunity to leverage the prosperous

online learning literature to these problems.

4.6. Causal and Counterfactual Reasoning

In both physical as well as digital ecosystems, the rapid pace of evolution of the underlying

environment necessitates that the principal constantly test new incentives aimed at better

aligning the agents’ objective with its own. Traditionally, firms have preferred to employ

methodologies such as A/B testing (146) to evaluate how proposed treatments compare

against existing incentives. However, in many cases such an approach may be infeasible,

e.g., in online marketplaces, frequent A/B testing could adversely affect revenues or result

in claims of unfair treatment (147). A powerful technique in the field of learning theory

that allows the designer to circumvent these issues is that of counterfactual reasoning—

using observations about a past treatment to infer about the effectives of an alternative

intervention.

The field of counterfactual inference features a rich set of tools both in online and

offline learning (147, 148, 149) to evaluate the performance of untested incentives and solve

for optimal incentives, thereby allowing a designer to ‘make the most out of limited data

samples’. At the same time, almost all of this work has focused on static systems without
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economic constraints such as individual rationality or incentive compatibility. Therefore,

the design of incentives for multi-agent systems with self-interested users whose behavior

may evolve with time remains uncharted territory.

Extending classical theories of counterfactual learning to game-theoretic models is a

non-trivial task due to the presence of confounding variables (e.g., see (149, 150)) and

hidden dependencies. That is, unobserved system variables or externalities that correlate

positively with one incentive may fail to do for another. For instance, digital incentives that

are deployed via mobile applications may correlate with the age of the recipient and the

results may fail to replicate for more traditional incentives. This calls for a more holistic

approach towards counterfactual learning for designing incentives that take into account a

causal graph of relationships between different variables that could potentially affect agents’

response in direct and indirect ways (151). Understanding how traditional approaches in

online learning via causal inference extend (151, 152, 153) to principal-agent or Stackelberg

models remains an important open questions.

The multi-armed bandit approaches in online learning briefly discussed in Section 3.3

represent interesting solutions to incentive design via exploration-exploitation strategies

for assessing the performance of a set of incentives when the principal has no a priori

information and receives limited feedback. The classic multi-armed bandit and contextual

bandit models can be expressed as special cases of the more general framework for causal

inference (149, 153). A promising direction of future work is in drawing on more general

casual learning techniques to develop algorithms for incentive design that exploit casual

feedback to make inferences about the performance of incentives without having to explore

all possibilities.

5. Closing Remarks

Motivated by applications in which there are technology-enabled, largely self-interested

humans interacting and consuming resources in a constrained physical system, the purpose

of this article is to provide a perspective on challenges and opportunities in the development

of a toolkit for designing of incentives. We review work from economics, control theory, and

machine learning which we believe to be building blocks for this new toolkit. Incentive

design has long been studied in economic and control and is a more recent venture for

machine learning. Each of these fields contributes a unique perspective on the design of

incentives, and we try to articulate open questions and expose avenues for future research

which bridge these domains by leveraging existing contributions to move the theoretical

and computational frontier for incentive design forward.
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127. Abbasi-Yadkori Y, Pál D, Szepesvári C. 2011. Improved algorithms for linear stochastic ban-

dits. In Advances in Neural Information Processing Systems. 2312–2320 pp.

128. Li L, Chu W, Langford J, Schapire RE. 2010. A contextual-bandit approach to personalized

news article recommendation. In Proceedings of the 19th International Conference on World

Wide Web. ACM, 661–670 pp.

129. Slivkins A. 2011. Multi-armed bandits on implicit metric spaces. In Advances in Neural In-

formation Processing Systems. 1602–1610 pp.

130. Kleinberg R, Slivkins A, Upfal E. 2013. Bandits and experts in metric spaces. arXiv preprint

arXiv:1312.1277

131. Slivkins A, Radlinski F, Gollapudi S. 2013. Ranked bandits in metric spaces: learning diverse

rankings over large document collections. J. Machine Learning Research 14:399–436

132. Slivkins A. 2014. Contextual bandits with similarity information. J. Machine Learning Re-

search 15:2533–2568

133. Chapelle O, Li L. 2011. An empirical evaluation of thompson sampling. In Advances in Neural

Information Processing Systems. 2249–2257 pp.

134. Agrawal S, Goyal N. 2012. Analysis of thompson sampling for the multi-armed bandit problem.

In Conference on Learning Theory. 39–1 pp.

135. Srinivas N, Krause A, Kakade SM, Seeger M. 2009. Gaussian process optimization in the

bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995

136. Srinivas N, Krause A, Kakade SM, Seeger MW. 2012. Information-theoretic regret bounds

for gaussian process optimization in the bandit setting. IEEE Transactions on Information

Theory 58:3250–3265

137. Langford J, Zhang T. 2008. The epoch-greedy algorithm for multi-armed bandits with side

information. In Advances in Neural Information Processing Systems. 817–824 pp.

138. Chu W, Li L, Reyzin L, Schapire R. 2011. Contextual bandits with linear payoff functions.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.

208–214 pp.

139. Agrawal S, Goyal N. 2013. Thompson sampling for contextual bandits with linear payoffs. In

International Conference on Machine Learning. 127–135 pp.

140. Eghbali R, Fazel M. 2016. Designing smoothing functions for improved worst-case competitive

ratio in online optimization. In Advances in Neural Information Processing Systems. 3287–

3295 pp.

141. Eghbali R, Fazel M, Mesbahi M. 2016. Worst case competitive analysis for online conic opti-

mization. In Proceedings of the IEEE Conference on Decision and Control. IEEE, 1945–1950

pp.

142. Eghbali R, Saunderson J, Fazel M. 2018. Competitive online algorithms for resource allocation

over the positive semidefinite cone. arXiv preprint arXiv:1802.01312

143. Mansour Y, Slivkins A, Syrgkanis V. 2015. Bayesian incentive-compatible bandit exploration.

In Proceedings of the 16th ACM Conference on Economics and Computation. ACM, 565–582

pp.

144. Kannan S, Kearns M, Morgenstern J, Pai M, Roth A, et al. 2017. Fairness incentives for

myopic agents. In Proceedings of the 2017 ACM Conference on Economics and Computation.

ACM, 369–386 pp.

145. Ghalme G, Jain S, Gujar S, Narahari Y. 2017. Thompson sampling based mechanisms

for stochastic multi-armed bandit problems. In Proceedings of the 16th Conference on Au-

tonomous Agents and MultiAgent Systems. International Foundation for Autonomous Agents

and Multiagent Systems, 87–95 pp.

36 Ratliff, Dong, Sekar, and Fiez



146. Kohavi R, Longbotham R, Sommerfield D, Henne RM. 2009. Controlled experiments on the

web: survey and practical guide. Data mining and knowledge discovery 18:140–181

147. Swaminathan A, Krishnamurthy A, Agarwal A, Dud́ık M, Langford J, et al. 2017. Off-policy

evaluation for slate recommendation. In Advances in Neural Information Processing Systems.

3635–3645 pp.

148. Strehl AL, Langford J, Li L, Kakade S. 2010. Learning from logged implicit exploration data.

In Advances in Neural Information Processing Systems. 2217–2225 pp.

149. Bottou L, Peters J, Candela JQ, Charles DX, Chickering M, et al. 2013. Counterfactual rea-

soning and learning systems: the example of computational advertising. J. Machine Learning

Research 14:3207–3260

150. Bareinboim E, Forney A, Pearl J. 2015. Bandits with unobserved confounders: A causal

approach. In Advances in Neural Information Processing Systems. 1342–1350 pp.

151. Alon N, Cesa-Bianchi N, Dekel O, Koren T. 2015. Online learning with feedback graphs:

Beyond bandits. In Proceedings of the 28th Conference on Learning Theory. 23–35 pp.

152. Hu H, Li Z, Vetta AR. 2014. Randomized experimental design for causal graph discovery. In

Advances in Neural Information Processing Systems. 2339–2347 pp.

153. Lattimore F, Lattimore T, Reid MD. 2016. Causal bandits: Learning good interventions via

causal inference. In Advances in Neural Information Processing Systems. 1181–1189 pp.

www.annualreviews.org • A Perspective on Incentive Design 37


