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We study Matching, Densest subgraph, and other graph optimization problems in a partial information setting,

where the true graph weights are hidden, and the algorithm only has access to ordinal preference information.

Our model is motivated by the fact that in settings where the nodes of the graph represent self-interested

agents, it may be preferable for the agents to rank their adjacent edges in the order of preferences as opposed

to expressing the numerical value of each edge weight. Specifically, we study problems where the ground

truth exists in the form of a weighted graph of agent utilities, but the algorithm receives as input only a

preference ordering for each agent induced by the underlying weights. Against this backdrop, we design

both truthful and non-truthful algorithms to approximate the true optimum solution with respect to the

hidden weights. Perhaps surprisingly, such algorithms are possible for many important problems, as we show

using our framework based on the techniques of greedy, random, and serial dictatorship. Our framework

yields a 1.6-approximation algorithm for the maximum weighted matching problem, and a 4-approximation

algorithm for Densest k-subgraph as the hidden weights constitute a metric. Under the additional constraint of

strategyproofness, we obtain approximation factors of 1.77 and 8 respectively for the above problems. We also

show that our framework yields constant factor approximations for a number of other graph maximization

problems. Our results are the first non-trivial ordinal approximation algorithms for such problems, and indicate

that in many situations, we can design robust algorithms even when we are agnostic to the precise agent

utilities.
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1 INTRODUCTION
In recent years, the field of algorithm design has been marked by a steady shift towards newer

paradigms that take into the account the behavioral aspects and communication bottlenecks

pertaining to self-interested agents. In contrast to traditional algorithms that are assumed to have
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complete information regarding the inputs, mechanisms that interact with autonomous individuals

commonly assume that the input to the algorithm is controlled by the agents themselves. In

this context, a natural constraint that governs the process by which the algorithm elicits inputs

from these agents is truthfulness [37, 40]: agents cannot improve upon the resulting outcome

by misreporting the inputs. Another constraint that has recently gained traction in network

optimization problems is that of ordinality [11, 15, 36]: here, agents who correspond to the nodes

of the network can only submit a preference list of their neighbors ranked in the order of the

edge weights. The need for algorithms that are truthful or ordinal arises in a number of important

settings; however, it is well known that it is impossible to obtain optimum solutions even when the

algorithm is required to satisfy only one of these two constraints [11, 25, 40].

In this work, we study the design of approximation algorithms for popular graph optimization

problems such as matching, clustering, and Densest subgraph with the goal of understanding

the price of ordinality. To be more specific, we consider the above optimization problems on a

weighted graph whose vertices represent the agents, and where the edge weights (that correspond

to agent utilities) satisfy the triangle inequality, and pose the following question: “How does a
computationally efficient algorithm that only has access to each agent’s edge weights in the form of
preference rankings perform in comparison to an optimal algorithm that has full knowledge of the
weighted graph?". Additionally, we also consider the case when the edge weights constitute private

information known only to the agents (nodes) on that edge and design truthful mechanisms that

elicit preference orders from each agent and approximate the optimum solution using only the

preference information.

A Case for an Ordinal World with Partial Information. A crucial question in algorithm and

mechanism design is: “How much information about the agent utilities does the algorithm designer

possess?". The starting point for the rest of our paper is the observation that in many natural

settings, it is unreasonable to expect the mechanism to know the exact weights of the edges in

the graph [11, 15]. For example, when clustering a set N of objects, it may be difficult to precisely

quantify the true similarity level for every pair of objects; ordinal questions such as ‘which is more

similar to object x : y or z?’ may be easier to answer. Such a situation would also arise when the

graph represents a social network of agents, as the agents themselves may not be able to express

‘exactly how much each friendship is worth’, but would likely be able to form an ordering of their

friends from best to worst. This phenomenon has also been observed in settings pertaining to

voting or social choice, in which it is much easier to obtain ordinal preferences instead of true

agent utilities [5, 39].

Motivated by this, we consider a model where for every agent i ∈ N , we only have access to a
preference ordering among the agents in N − {i} so that ifw (i, j ) > w (i,k ), then i prefers j to k—
here,w (i, j ) is the weight on the edge e ∈ N ×N . The common approach in Learning Theory while

dealing with such ordinal settings is to estimate the ‘true ground state’ based on some probabilistic

assumptions on the underlying utilities [38, 43]. In this paper we take a different approach, and

instead focus on the more demanding objective of designing robust algorithms, i.e., algorithms that

provide good performance guarantees no matter what the underlying weights are.

Despite the large body of literature (e.g., see [3, 42]) on computing matchings, clusterings, and

teams in settings with preference orderings, there has been much less work on quantifying the

quality of these solutions. As is common in social choice theory, most papers (implicitly) assume

that the underlying utilities cannot be measured or do not even exist, and hence there is no clear

way to measure quality [1, 8, 29]. In such papers, the focus therefore is on computing solutions that

satisfy normative properties such as stability or optimize a measure of efficiency that depends only

on the preference orders, e.g., average rank. On the other hand, the literature on approximation
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algorithms usually follows the utilitarian approach [30] of assigning a numerical quality to every

solution; the presence of input weights is taken for granted. Our work combines the best of both

worlds: we do not assume the availability of numerical information (only its latent existence), and

yet our approximation algorithms must compete with algorithms that know the true input weights.

Model and Problem Statements. In this work, we consider a weighted, complete graphG = (N ,E)
where the vertex setN also denotes the set of agents. We design ordinal approximation algorithms

for a class of optimization problems where the objective is to select a subset of edges S ⊆ E
satisfying some constraint in order to maximize the weight of the selected edges. For each i ∈ N ,

we assume that the agent has a strict preference ordering Pi over the agents in N − {i}, which are

derived from the (hidden) underlying edge weights (w (x ,y) for edge x ,y ∈ E), which satisfy the

triangle inequality, i.e., for x ,y, z ∈ N ,w (x ,y) ≤ w (x , z) +w (y, z). These weights are considered
to represent the ground truth, which is not known to the algorithm. We say that the preferences

P = (Pi )i ∈N are induced by weightsw if ∀x ,y, z ∈ N , if x prefers y to z, thenw (x ,y) ≥ w (x , z).
For the specific kind of the problems that we study, the metric structure occurs in a number of

well-motivated environments such as: (i ) social networks, where the property captures a specific

notion of friendship, (ii ) Euclidean metrics: each agent is a point in a metric space which denotes

her skills or beliefs, and (iii ) edit distances: each agent could be represented by a string over a

finite alphabet (e.g., a gene sequence) and the graph weights represent the edit or Levenshtein

distances [44]. The reader is asked to refer to Appendix A for additional details on these specific

applications and a mathematical treatment of friendship in social networks.

Our main goal is to form ordinal approximation algorithms for a variety of problems. An

algorithm A is said to be ordinal if it only takes preference orderings P as input (and not the hidden

numerical weights w). It is an α-approximation algorithm if for all possible weights w , and the

corresponding induced preferences P, we have that OPT (w )
A(P) ≤ α . Here OPT (w ) is the total value of

the maximum weight solution with respect tow , and A(P) is the value of the solution returned by

the algorithm for input P. In other words, such algorithms produce solutions which are always a

factor α away from optimum, without actually knowing what the weightsw are.

Truthful Mechanisms for an Ordinal World. We study the design of ordinal approximation algo-

rithms for graphmaximization problems under two informational paradigms: (i ) the full information

(but ordinal) case when the preference orders corresponding to each agent are readily available

to the algorithm designer, and (ii ) the private information model when the preference order Pi
corresponding to agent i is known only to that agent. In the latter case, our objective is to design a

truthful, ordinal mechanism that approximates the optimal solution, i.e., an algorithm that incen-

tivizes agents to report their true preference rankings and uses these preference rankings as input

to compute an approximately optimal solution for the problem at hand. The algorithm is truthful if

no single agent can improve their utility by submitting a preference ordering different from the

‘true ranking’ induced by the graph weights. Here, the utility of each agent i is simply the total

weight of the edges incident to i which are chosen. These utilities have a natural interpretation

with respect to the problems considered in this work. For instance, for matching problems, an

agent’s utility corresponds to her affinity or weight to the agent to whom she is matched, and for

densest subgraph as well as clustering, the utility is her aggregate weight to the agents in the same

team or cluster.

Although we present approximation results for a variety of graph optimization problems, the

majority of this paper will focus on the following two problems: (i ) MaximumWeighted Match-
ing(MWM): where the goal is to compute a matching to maximize the total (unknown) weight of

the edges inside and (ii ) Densest k-Subgraph: where the objective is to compute a set S ⊆ N of
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Problem Full Info Our Results
(Metric Weights) Ordinal Ordinal & Truthful

Max Weighted Matching 1 [21] 1.6 1.77

Densest k-Subgraph 2 [10, 31] 4 8

Table 1. A comparison of the approximation factors obtained by ordinal approximation algorithms presented
in this work and previous results for the full information setting with andwithout the truthfulness requirement.

size k to maximize the weight of the edges inside S . For both of these problems, we design two

types of algorithms, those that are simply ordinal and those that satisfy truthfulness in addition to

ordinality. Finally, we remark that the approximation factor obtained by a mechanism that is both

truthful as well as ordinal cannot be better than that obtained by an ordinal mechanism that has

full information about agent preferences.

Challenges, Technique, and Contributions
We describe the challenges involved in designing ordinal algorithms through the lens of the

Maximum Weighted Matching problem. First, different sets of edge weights may give rise to the

same preference ordering and moreover, for each of these weights, the optimum matching can

be different. Therefore, unlike for the full information setting, no algorithm (deterministic or

randomized) can compute the optimum matching using only ordinal information. More generally,

the restriction that only ordinal information is available precludes almost all of the well-known

algorithms for computing a matching. This motivates the need for a new line of algorithmic thinking

that specifically exploits preference rankings.

As a first step towards designing truthful ordinal mechanisms, we introduce three fundamental

paradigms based on the popular algorithmic notions of Greedy, Serial Dictatorship, and Uniformly
Random. These techniques have consistently featured in a number of works on matching and

Densest subgraph, and indeed, it is not difficult to characterize the approximation ratio obtained

via a direct application of these paradigms. However, the main contribution of the current work

is designing algorithms that interleave these basic greedy, random, and serial dictatorship based

solutions in order to beat the approximation guarantees obtained by a naive application of these

techniques. For instance, the simple greedy and random techniques yield 2-approximations to the

optimum matching for the Maximum Weighted Matching problem. However, by carefully studying

the interplay between these two techniques, it is actually possible to do much better, and obtain a

1.6-approximation algorithm.

Our Contributions. The central contributions of this paper are truthful and non-truthful mech-

anisms that use ordinal information to obtain constant factor approximations for the maximum

weighted matching and densest k-subgraph problems. The main approximation guarantees are

summarized in Table 1. As seen in the table, our ordinal algorithms provide approximation factors

that are close to the best known for the full information versions, where the algorithm designer has

complete knowledge of the graph weights. In other words, we show that it is possible to find good

solutions to such problems even if the graph weights are unknown and only ordinal information is

presented to the algorithm, and even if the agents can lie about their preferences.

Our secondary contribution is a general approach towards designing ordinal approximation

algorithms for a variety of optimization problems. More specifically, we show that the greedy, ran-

dom, and serial dictatorships techniques can be leveraged to obtain constant factor approximation
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Problem Our Approximation Factor
Max k-Matching 2

k-sum Clustering 2

Max Traveling Salesman (TSP) 2

Max Spanning Tree 2

Max k-Vertex Cover 4

Table 2. Approximation factors for other graph maximization problems obtained via ordinal algorithms.

algorithms for a number of well-studied graph maximization problems. The approximation factors

for these problems are given in Table 2; the problem definitions can be found in Section 5.

Related Work
Broadly speaking, the cornucopia of algorithms proposed in the matching literature belong to

one of two classes: (i ) Ordinal algorithms that ignore agent utilities, and focus on (unquantifiable)

axiomatic properties such as stability, or Pareto-optimality and (ii ) Optimization algorithms where

the numerical utilities are fully specified. From our perspective, algorithms belonging to the former

class, with the exception of Greedy, do not result in good approximations for the hidden optimum,

whereas the techniques used in the latter (e.g., [18, 19]) depend heavily on improving cycles and
thus, are unsuitable for ordinal settings. A notable exception to the above dichotomy is the class of

optimization problems studying ordinal measures of efficiency [1, 8, 15, 35], for example, the average

rank of an agent’s partner in the matching. Such settings often involve the definition of ‘new utility

functions’ based on given preferences, and thus are fundamentally different from our model where

preexisting cardinal utilities give rise to ordinal preferences.

The truthful mechanisms in our work fall under the umbrella of ‘mechanism design without

money’ [4, 12, 20, 25, 40], a recent line of work on designing strategyproof mechanisms for settings

like ours, where monetary transfers are irrelevant. A majority of the papers in this domain deal

with mechanisms that elicit agent utilities, specifically for one-sided matchings, assignments and

facility location problems that are somewhat different from the graph problems we are interested

in. The notable exceptions are the recent papers on truthful, ordinal mechanisms for one-sided

matchings [12, 25] and general allocation problems [4].While [25] looks at normalized agent utilities

and shows that no ordinal algorithm can provide an approximation factor better than Θ(
√
N ), [12]

considers minimum cost metric matching under a resource augmentation framework. The main

differences between our work and these two papers are (1) we consider two-sided matching instead

of one-sided, as well as other clustering problems, as well as non-truthful algorithms with better

approximation factors, and (2) we consider maximization objectives in which users attempt to

maximize their utility instead of minimize their cost. The latter may seem like a small difference,

but it completely changes the nature of these problems, allowing us to create many different

truthful mechanisms and achieve constant-factor approximations. Finally, [4] looks at the problem
of allocating goods to buyers in a ‘fair fashion’. In that paper, the focus is on maximizing a popular

non-linear objective known as the maximin share, which is incompatible with our objective of

social welfare maximization. That said, an interesting direction is to see if our techniques extend to

other objectives.

After the publication of the preliminary versions of this work, a number of follow-up papers

have focused on the design of ordinal algorithms for other graph optimization problems [2] or

more general models of information [7]. Specifically, in [2], the authors present an ordinal greedy

approach for a general class of graph optimization problems, where the approximation factors
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depend on the degree and sparsity of the graph. Although our results in Section 5 are similar in

spirit to those in [2], we also present constant factor approximation algorithms for problems that do
not fall within the class of graph optimization problems studied in that work, particularly, namely

k-sum clustering and max k-vertex cover. Secondly, [7] considers the problem of computing a

matching on bipartite graphs and presents ordinal approximation algorithms for more general

models of information where the designer only has access to partial ordinal information for each

agent (e.g., top αN preferred nodes). Our results in Section 3 are not directly comparable to theirs

as we study matchings on complete graphs where the weights satisfy the triangle inequality. That

said, we believe that our algorithms

All of the problems studied in this paper have received considerable attention in the literature for

the full information case with metric weights. In particular, metric Densest Subgraph (also known as

MaximumDispersion or Remote Clique) is quite popular owing to its innumerable applications [9, 10].

The close ties between the optimum solutions for Matching, k-sum Clustering, and Densest k-
subgraph was first explored by Feo and Khellaf [24], and later by Hassin et al. [31].

Distortion in Social Choice Our work is similar in motivation to the growing body of research

in computational social choice that study settings where the voter preferences are induced by a set

of hidden utilities [5, 6, 11, 13, 14, 23]. The voting protocols in these papers are essentially ordinal

approximation algorithms, albeit for the very specific problem of selecting the utility-maximizing

candidate from a set of alternatives.

Finally, other models of incomplete information have been considered in the Matching literature,

most notably online algorithms [32] and truthful algorithms (for strategic agents) [20]. Given the

strong motivations for preference rankings in settings with agents, it would be interesting to see

whether algorithms developed for other partial information models can be extended to our setting.

2 PRELIMINARIES AND FRAMEWORK FOR ORDINAL ALGORITHMS
In this section, we present a general framework for developing ordinal approximation algorithms

using the simple paradigms mentioned previously. Our framework comprises of technical lemmas

and properties corresponding to three algorithmic approaches: greedy, uniform, and random serial
dictatorship. In the interest of extensibility, we present these techniques in reference to the Max

k-matching problem, a strict generalization of the Maximum Weighted Matching problem, where

the objective is to select a matching consisting only of k ≤ N
2
edges. This has direct implications to

both of the primary problems studied in this work.

We also discuss how these approaches can be leveraged to design truthful ordinal algorithms

for matching and establish tight upper and lower bounds on the performance of algorithms that

select matching edges either greedily or uniformly at random. In Sections 3 and 4, we develop

more sophisticated mechanisms that build upon the simple paradigms presented here, leading to

improved approximation factors. Finally, we remark that for the sake of convenience and brevity,

we will often assume that N , the number of agents, is even, and sometimes that it is also divisible

by 3. As we discuss in Appendix B, our results still hold if this is not the case, with only minor

modifications. We begin with some pertinent definitions.

2.1 Definitions
We study settings consisting of a set N of self-interested agents, where each agent i ∈ N has a

preference ranking Pi over the other agents. We assume that the vector of preferences P := (Pi )i ∈N
is consistent with a set of true weights (wi j )i, j ∈N which the agents may or may not be aware of.

Given this setup, we are interested in designing truthful, ordinal algorithms for some well-studied

graph optimization problems where the objective, broadly speaking, is to compute a set of edges
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S satisfying some constraint in order to maximize the weight of edges inside S . This includes
Maximum Weighted Matching and Densest Subgraph which are the main problems studied in this

work but also other popular problems such as k-sum Clustering, Max TSP, Max Spanning Tree,

and Max (Weighted) k-Vertex Cover.
For all of these problems, we study two information models: a full information ordinal setting,

where the weights are hidden but the preference orders corresponding to each agent are known to

us, and a private information model where each agent’s preference list Pi is known only to that

agent. In the latter case, we are interested in designing mechanismsM that elicit this preference

information from the agents and output a valid solution to the above problems. The input to this

mechanism is a strategy profile s = (si )i ∈N such that si denotes the preference ranking over the
agents in N − {i} as reported by agent i , and its output is a set of edgesM (s) ⊆ E corresponding

to the one of the problems defined above.

Agent Utilities: Suppose that (wi j )i, j ∈N denotes the true weights, then the utility of agent i
under mechanismM, and input profile s is the sum of weights of the edges inM (s) containing i ,
i.e., uMi (s) =

∑
j :(i, j )∈M (s)w (i, j ). When the mechanism is clear from the context, we will omit the

superscriptM from the user’s utility. These utilities have a natural interpretation with respect to

the matching and team formation problems considered in this work. Our objective in this paper is

to design truthful, ordinal mechanisms that maximize the overall social welfare, i.e., the sum of the

utilities of all of the agents.

Truthful Ordinal Mechanisms. As mentioned previously, we are interested in designing incentive-

compatible mechanisms that elicit ordinal preference information from the users, i.e., mechanisms

where agents are incentivized to truthfully report their preferences in order to maximize their

utility. We now formally define the notions of truthfulness pertinent to our setting. Throughout the

rest of this paper, we will use Pi to represent the true preference ranking of agent i (i.e., one that is
induced by the weightsw (i, j )), and si to represent the preference ordering that agent i submits to

the mechanisms (which will be equal to Pi if i is truthful).

Definition 2.1. (Truthful Mechanism) A deterministic mechanismM is said to be truthful if for

every i ∈ N , all s−i , s ′i , we have that ui (Pi , s−i ) ≥ ui (s
′
i , s−i ), where ui is the utility guaranteed to

agent i by the mechanism.

Definition 2.2. (Universally Truthful Mechanisms) A randomized mechanism is said to be univer-

sally truthful if it is a probability distribution over truthful deterministic mechanisms.

Informally, in a universally truthful mechanism, a user is incentivized to be truthful even when

she knows the exact realization of the random variables involved in determining the mechanism.

Definition 2.3. (Truthful in Expectation) A randomized mechanism is said to be truthful in

expectation if an agent always maximizes her expected utility by truthfully reporting her preference

ranking. The expectation is taken over the different outcomes of the mechanism.

All of our algorithms are universally truthful, not just in expectation. The reader is asked to

refer to [17] for a useful discussion on the types of randomized mechanisms, and settings where

universally truthful mechanisms are strongly preferred as opposed to the mechanisms that only

guarantee truthfulness in expectation.

2.2 Approaches for Designing Truthful and Ordinal Mechanisms: Greedy
Our first algorithm is the ordinal analogue of the classic greedy matching algorithm, that has been

extensively applied across the matching literature. In order to better understand this algorithm, we

first define the notion of an undominated edge.
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Definition 2.4. (Undominated Edges) Given a set E of edges, (x ,y) ∈ E is said to be an undominated

edge if for all (x ,a), (y,b) ∈ E,w (x ,y) ≥ w (x ,a) andw (x ,y) ≥ w (y,b).

Given a set E, let us use the notation E⊤ to denote the set of undominated edges in E. Finally,
we say that an edge set E is complete if there exists some S ⊆ N such that E is the complete

graph on the nodes in S (minus the self-loops). We make the following two observations regarding

undominated edges

(1) Every edge set E has at least one undominated edge. In particular, any maximum weight

edge in E is obviously an undominated edge.

(2) Given an edge set E, one can efficiently find at least one edge in E⊤ using only the ordinal
preference information. A naive algorithm for this is as follows. Consider starting with an

arbitrary node x . Let (x ,y) be its first choice out of all the edges in E (i.e.,y is x ’s first choice
of all the nodes it has an edge to in E). Now consider y’s first choice. If it is x , then the

edge (x ,y) must be undominated, as desired. If instead it is some z , x , then continue this

process with z. Eventually this process must cycle, giving us a cycle of nodes x0,x1, . . . ,xℓ−1

such that xi is the top preference of xi−1, taken with respect to mod ℓ. This means that

all edges in this cycle have equal weight, even though we do not know what this weight is,

since xi preferring xi+1 over xi−1 means thatw (xi ,xi+1) ≥ w (xi ,xi−1). Moreover, the edge

weights of all edges in this cycle must be the highest ones incident on the nodes in this

cycle, since they are all top preferences of the nodes. Therefore, all edges in this cycle are

undominated, as desired.

In general, an edge set E may have multiple undominated edges that are not part of a cycle. Our

first lemma shows that these different edges are comparable in weight.

Lemma 2.5. Given a complete edge set E, the weight of any undominated edge is at least half as
much as the weight of any other edge in E, i.e., if e = (x ,y) ∈ E⊤, then for any (a,b) ∈ E, we have
w (x ,y) ≥ 1

2
w (a,b). This is true even if (a,b) is another undominated edge.

Proof. Since (x ,y) is an undominated edge, and since E is a complete edge set this means that

w (x ,y) ≥ w (x ,a), and w (x ,y) ≥ w (x ,b). Now, from the triangle inequality, we get w (a,b) ≤
w (a,x ) +w (b,x ) ≤ 2w (x ,y). □

Now that we have obtained a better understanding of undominated edges, we are ready to present

the ordinal greedy algorithm for the Max k-Matching problem, which we introduce in Algorithm 1.

Recall that Max k-matching reduces to the MWM problem when k = N
2
. For this case, it is not

difficult to see that the output of Algorithm 1 coincides with that of the extremely popular greedy

algorithm that picks the maximum weight edge at each iteration, and therefore, our algorithm

yields an ordinal 2-approximation for the MWM problem. Our next result shows that the algorithm

is truthful only for the k = N
2
case, i.e., the maximum weighted matching problem.

ALGORITHM 1: Ordinal Greedy Algorithm for Maximum k-Matching

Input: Parameter k ;

M := ∅, T is the valid set of edges initialized to E, the complete graph on N ;

while T is not empty do
pick an undominated edge

1e = (x ,y) from T and add it toM ;

remove all edges containing x or y from T ; if |M | = k , T = ∅.
end
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Proposition 2.6. Algorithm 1 is truthful for the Max k-Matching problem only when k = N
2
.

Proof. We need to prove that for any given strategy profile adopted by the other players s−i ,
player i maximizes her utility when she is truthful, i.e., if Pi is the true preference ordering of agent
i and s−i is any set of preference orderings for the other agents, then ui (Pi , s−i ) ≥ ui (s

′
i , s−i ) for

any s ′i . Our proof will proceed via contradiction and will make use of the following fundamental

property: if Algorithm 1 (for some input) matches agent i to j during some iteration, then both i and j
prefer each other to every other agent that is unmatched during the same round.
We introduce some notation: suppose that M denotes the matching output by Algorithm 1 for

input (Pi , s−i ), and for every x ∈ N ,m(x ) is the agent to whom x is matched underM . Let ej be the
edge added to the matchingM in round j of Algorithm 1, denote the round in which i is matched to

m(i ) as round k . Assume to the contrary that for input (s ′i , s−i ), i is matched to an agent she prefers

more thanm(i ). Let the altered matching be referred to asM ′, and letm′(x ) be the agent who x is

matched with inM ′.
We begin by proving the following claim: For each j < k , we have that ej ∈ M ′. In other words,

all the edges which are included intoM before i is matched by Algorithm 1 must appear in both

matchings no matter what i does. Once we prove this claim, we are done, since ek is the highest-

weight edge from i to any node not in e1, . . . , ek−1, so i maximizes its utility by telling the truth

and receiving utility equal to the weight of ek .
To prove the claim above, we proceed by induction. Note that if k = 1, then i is trivially truthful,

sincem(i ) is its top choice in the entire graph. Now suppose that we have shown the claim for

edges e1, . . . , ej−1. Let ej = (x ,y), and without loss of generality suppose that x is matched in our

algorithm constructingM ′ before y. At the time that x is matched withm′(x ), it must be thatm′(x )
is the top choice of x from all available nodes. But, by the definition of our algorithm, y is the top

choice of x that is not contained in e1, . . . , ej−1. Sincem
′(x ) is not contained in e1, . . . , ej−1 due

to our inductive hypothesis, this means that x prefers y overm′(x ), and since y is not matched

yet, this means that x and y will become matched together in M ′. Thus, ej is in M ′ as well. This
completes the proof of our claim.

To see why this mechanism is not truthful for the max k-matching problem when k < N
2
,

notice that agents which would not be matched in the first k steps have incentive to lie and form

undominated edges where none exist, in order to be matched earlier. Assume that the algorithm

uses a deterministic tie-breaking rule to choose between multiple undominated edges in each round.

While this does not really alter the final output for the perfect matching problem, the tie-breaking

rule may lead to certain undominated edges not getting selected for the final matching.

Specifically, consider the max k-matching problem and suppose that when the input preferences

are truthful, agents i , j are not present in the matching M returned by Algorithm 1. Moreover,

suppose that (i ) j’s first preference is i , and (ii ) the deterministic tie-breaking rule always prefers

(i, j ) over other edges (one can design preferences so that agents favoured by the tie-breaking are

not selected for truthful inputs). Clearly i has incentive to alter its preferences to identify j as its
most preferred node and receive a utility ofw (i, j ), which can be strictly greater than its previous

utility of zero for an appropriately defined instance. □

Greedy Algorithms for Other Problems Can we use a similar approach to design algorithms for the

other problems that we are interested in? In Section 5, we present a general-purpose ordinal greedy

algorithm that achieves constant factor approximations for a variety of problems such as k-sum
Clustering, Max TSP, etc. For the Densest k-subgraph problem, the deceptively simple algorithm

1
For the sake of completeness, we assume that when T , ∅ but there are no undominated edges left, e.g., when agents lie,

the algorithm picks an edge uniformly at random
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1:10 E. Anshelevich and S.Sekar

that picks an undominated edge greedily in each round and adds the two vertices constituting its end

points to the solution yields a 4-approximation to the optimum omniscient solution. Unfortunately,

the greedy approach does not lead to truthful algorithms for any of the problems studied in this

work other than MWM. We now illustrate this via the Densest subgraph problem.

Consider the Densest k-subgraph problem with k = 4, and an instance with 6 nodes whose

preferences we define partially: a’s top 3 nodes are b, c,d ; b’s top two nodes are a and d ; c’s first
two nodes are a, e; d’s top two preferences are b and e and finally, e, f prefer each other as a first

choice. Consider the greedy algorithm that first picks a matchingM with
k
2
-edges and returns the

same set of nodes as in the matching. Moreover, suppose that the algorithm’s tie-breaking involves

selecting edges containing a or b before edges containing e, f and then c,d . Now, under these
preferences, we claim that node a stands to improve her utility by lying when all the other agents

are being truthful. To see why, first observe that if node a truthfully reports her preferences, the

algorithm returns {a,b, e, f } as the solution set. On the other hand, if a lies and points to c as her
first preference, then the algorithm picks (a, c ) first followed by (b,d ) resulting in the set {a,b, c,d },
which is strictly preferable from a’s perspective. In a similar fashion, for other problems such as

clustering, TSP, or vertex cover, using a greedy algorithm could result in agents underplaying their

most preferred node if that node will be chosen in a later round regardless.

Random Algorithm for Matching and Other Problems
A much simpler approach that is completely oblivious to the input preferences involves selecting a

solution uniformly at random. Such an algorithm (described in Algorithm 2 for max k-matching)

naturally extends to all of the problems studied in this work and is obviously truthful. Somewhat

surprisingly, this approach also leads to a good approximation for maximum weighted matching.

We begin by describing the algorithm and then prove some independent technical lemmas that

provide us with a lower bound on the quality of a random matching and upper bound on that of

the optimum matching. For the purpose of generality, we define the algorithm with an arbitrary

edge set as an input; for the MWM problem (for instance), the input edge set is simply the complete

graph.

ALGORITHM 2: Random Algorithm for Max k-Matching

Input: Edge Set E ′ and Parameter k ;

M := ∅, T is the valid set of edges initialized to E ′;

while T is not empty and |M | < k do
pick an edge e = (x ,y) from T uniformly at random and add it toM ;

remove all edges containing x or y from T
end

Lemma 2.7. (Lower Bound)
(1) Suppose G = (T ,E ′) is a complete graph on the set of nodes T ⊆ N with |T | = n. Then, the

expected weight of the random (perfect) matching returned by Algorithm 2 for the inputs E ′, n
2

is E[w (MR )] ≥
1

n
∑

(x,y )∈E′w (x ,y).
(2) Suppose G = (T1,T2,E

′) is a complete bipartite graph on the set of nodes T1,T2 ⊆ N with
|T1 | = |T2 | = n. Then, the weight of the random (perfect) matching returned by Algorithm 2
for the inputs E ′,n is E[w (MR )] =

1

n
∑

(x,y )∈E w (x ,y).

Proof. We show both parts of the theorem using simple symmetry arguments. For the first part,

i.e., the complete (non-bipartite) graph, letM be the set of all perfect matchings in E. Then, we
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argue that every matchingM inM is equally likely to occur. Therefore, the expected weight ofMR
is

E[w (MR )] =
1

|M|

∑
M ∈M

w (M ) =
∑

e=(x,y )∈E

pew (x ,y), (1)

where pe is the probability of edge e occurring in the matching. Since the edges are chosen

uniformly at random, the probability that a given edge is present inMR is the same for all edges in

E. So ∀e , we have the following bound of pe , which we can substitute in Equation 1 to get the first

result.

pe =
|MR |

|E |
=

n/2

n(n − 1)/2
=

1

n − 1

≥
1

n
(2)

For the second case, where E is the set of edges in a complete bipartite graph, it is not hard to

see that once again every edge e is present in the final matching with equal probability. Therefore,

pe =
|MR |
|E | =

n
n2
= 1

n . The final bound follows from substituting this value into Equation 2. □

Lemma 2.8. (Upper Bound) LetG = (T ,E) be a complete subgraph on the set of nodesT with |T | = n.
Let S be a superset of T such that T ⊆ S ⊆ N , and letM be any perfect matching on the larger set S.
Then, the following is an upper bound on the weight ofM ,

w (M ) ≤
2

n

∑
x ∈T
y∈T

w (x ,y) +
1

n

∑
x ∈T

y∈S\T

w (x ,y)

Proof. Fix an edge e = (x ,y) ∈ M . Then, by the triangle inequality, the following must hold for

every node z ∈ T :w (x , z) +w (y, z) ≥ w (x ,y). Summing this up over all z ∈ T , we get∑
z∈T

(w (x , z) +w (y, z)) ≥ nw (x ,y).

Once again, repeating the above process over all e ∈ M , and then all z ∈ T we have

nw (M ) ≤ 2

∑
x ∈T
y∈T

w (x ,y) +
∑
x ∈T

y∈S\T

w (x ,y)

Each (x ,y) ∈ E appears twice in the RHS: once when we consider the edge inM containing x ,
and once when we consider the edge with y. □

We conclude by proving that picking edges uniformly at random yields a 2-approximation for

the MWM problem.

Claim 2.9. Algorithm 2 is an ordinal 2-approximation algorithm for the Maximum Weighted
Matching problem.

Proof. From Lemma 2.7, we know that in expectation, the matchingMR output by the random

algorithmwhen the input isN has a weight of at least
1

N
∑

x ∈N ,y∈N w (x ,y). SubstituingT = S = N
in Lemma 2.8 and M = OPT (max-weight matching) gives us the following upper bound on the

weight of OPT ,w (OPT ) ≤ 2

N
∑

x ∈N ,y∈N w (x ,y) ≤ 2E[w (MR )]. □
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Random Serial Dictatorship
Another popular approach to compute incentive compatible matchings that performs well in

settings with metric weights (albeit usually for one-sided matchings [12, 25]) is random serial

dictatorship. In some sense, this technique combines the best of greedy and random into a single

algorithm. We formally define the algorithm below for our two-sided matching setting. It is not

hard to see that the algorithm is trivially truthful.

Proposition 2.10. Algorithm 3 is universally truthful for the Maximum k-Matching problem.

ALGORITHM 3: Random Serial Dictatorship for Max k-Matching

Input: Parameter k ;

M := ∅, T is the set of available agents initialized to N ;

while T is not empty and |M | < k do
pick an available agent x uniformly at random from T ;

let y denote x ’s most preferred agent in T − {x }; add (x ,y) toM ;

remove {x ,y} from T ;

end

Serial dictatorship is among the most prominent of algorithms to feature in this work: our

primary approximation algorithm for truthful Densest k-subgraph relies on serial dictatorship.

Similar algorithms have received attention for other matching problems [12, 25] as well; ours is

the first result showing that the algorithms can approximate the optimum matching up to a small

constant factor for metric settings. Moreover, while serial dictatorship is usually easy to analyze,

our algorithm greatly exploits the randomness to select good edges in expectation. We now show

that this algorithm also leads to a 2-approximation for MWM. For the purpose of clear exposition,

we defer the somewhat lengthy proof of the theorem to Appendix C.

Theorem 2.11. Random serial dictatorship is a universally truthful mechanism that provides a
2-approximation for the Maximum k-Matching Problem.

3 ORDINAL MATCHING ALGORITHMS
In the previous section, we presented three truthful algorithms for the MWM problem, all of which

lead to 2-approximations. In this section, we improve upon these naive algorithms and present

improved approximations for both the truthful and non-truthful versions of the problem.

3.1 1.6-Approximation Algorithm for Non-Truthful Matching
Here we present a better ordinal approximation than simply taking the random or greedy matching.

The algorithm first performs the greedy subroutine until it matches two-thirds of the agents. Then

it either creates a random matching on the unmatched agents, or it creates a random matching

between the unmatched agents and a subset of agents which are already matched. We show that

one of these matchings is guaranteed to be close to optimum in weight. Unfortunately since we

have no access to the weights themselves, we cannot simply choose the best of these two matchings,

and thus are forced to randomly select one, giving us good performance in expectation. More

formally, the algorithm is:

Theorem 3.1. For every input ranking, Algorithm 4 returns a 8

5
= 1.6-approximation to the

maximum-weight matching.
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ALGORITHM 4: 1.6-Approximation Algorithm for Maximum Weight Matching

input :N , P
output :Perfect MatchingM
E is the complete graph on N , andM1 = M2 = ∅;

LetM0 be the output returned by Algorithm 1 for E,k = 2

3

N
2
;

Let B be the set of nodes in N not matched inM0, and EB is the complete graph on B.;

First Algorithm;

M1 = M0 ∪ (The perfect matching output by Algorithm 2 on EB , k =
1

3

N
2
) ;

Second Algorithm ;

Choose half the edges fromM0 uniformly at random and add them toM2;

Let A be the set of nodes inM0 \M2;

Let Eab be the edges of the complete bipartite graph (A,B);

Run Algorithm 2 on the set of edges in Eab , k =
2

3

N
2
to obtain a perfect bipartite matching and add the edges

returned by the algorithm toM2;

Final Output ReturnM1 with probability 0.5 andM2 with probability 0.5.

Proof. First, we provide some high-level intuition on why this algorithm results in a significant

improvement over the standard half-optimal greedy and randomized approaches. We first remark

that in order to obtain a half-approximation to OPT , it is sufficient to greedily select
2

3
(N /2) edges

(substitute α = 2

3
, α∗ = 1 in Lemma 3.2). Choosing all

N
2
edges greedily would be overkill, and so we

choose the remaining edges randomly in the First Algorithm of Alg 4. Now, let us denote byTop, the
set of

2

3
N nodes that are matched greedily. The main idea behind the second Algorithm is that if the

first one performs poorly (not that much better than half), then, all the ‘good edges’ must be going

across the cut from Top to Bottom (B), where B = N \Top. In other words,

∑
(x,y )∈Top×B w (x ,y)

must be large, and therefore, the randomized algorithm for bipartite graphs should perform well.

In summary, since we randomized between the first and second algorithms, we are guaranteed that

at least one of them should have a good performance for any given instance.

We now prove the theorem formally. We begin with a general lemma that presents a lower bound

on the quality of the greedy algorithm for Max k-matching for all values of k . This result may be of

independent interest.

Lemma 3.2. Given k = α N
2
, and k∗ = α∗ N

2
, the performance of the greedy k-matching with respect

to the optimal k∗-matching (i.e., OPT (k∗ )
Greedy (k ) ) is given by,

(1) max (2, 2
α∗

α
) if α∗ + α < 1

(2) max (2,
α∗ + 1

α
− 1) if α∗ + α ≥ 1

Thus, for example, when α∗ = 1, and α = 2

3
, we get the factor of 0.5, i.e., in order to obtain a

half-approximation to the optimum perfect matching, it suffices to greedily choose two-thirds as

many edges as in the perfect matching.

Proof. We show the claim via a charging argument where every edge in the optimum matching

M∗ is charged to one or more edges in the greedy matchingM . Specifically, we can imagine that

each edge e ∈ M contains a certain (not necessarily integral) number of slots se , initialized to

zero, that measure the number of edges inM∗ charged to e . Our proof will proceed in the form of

an algorithm: initially U = M∗ denotes the set of uncharged edges. In each iteration, we remove

some edge from U , charge its weight to some edges in M and increase the value of se for the
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1:14 E. Anshelevich and S.Sekar

corresponding edges so that the following invariant always holds:

∑
e ∈M sewe ≥

∑
e∗∈M∗\U we∗ .

Finally, we can bound the performance ratio using the quantity maxe ∈M se .
We describe our charging algorithm in three phases. Before we describe the first phase, consider

any edge e∗ = (a,b) inM∗. The edge must belong to one of the following two types.

(1) (Type I) Some edge(s) consisting of a or b (both a and b) are present inM .

(2) (Type II) No edge inM has a or b as an endpoint.

Suppose thatM∗ containsm1 Type I edges, andm2 Type II edges. We know thatm1 +m2 = k
∗
.

Also, let T ⊆ M denote the top
m1

2
edges in M , i.e., the

m1

2
edges with the highest weight. In the

first charging phase, we cover all the Type I edges using only the edges in T , and so that no more

than two slots of each edge are required.

Claim 3.3. (First Phase) There exists a mechanism by which we can charge all Type I edges inM∗

to the edges in T so that
∑

e ∈T sewe ≥
∑

e ∈TypeI (M∗ )we and for all e ∈ T , se ≤ 2.

Proof. We begin by charging the Type I edges to arbitrary edges in M , and then transfer the

slots that are outsideT to edges inT . Consider any Type I edge e∗ = (a,b): without loss of generality,
suppose that e = (a, c ) is the first edge containing either a or b that was added toM by the greedy

algorithm. Since the greedy algorithm only adds undominated edges, we can infer thatwe ≥ we∗

(or else e would be dominated by e∗). Using this idea, we we charge the Type I edges as follows

(Algorithm: Phase I (Charging)) Repeat untilU contains no Type I edge: pick a type

I edge e∗ = (a,b) fromU . Suppose that e = (a, c ) is the first edge containing either

a or b that was added toM . Sincewe ≥ we∗ , charge e
∗
to e , i.e., increase se by one

and remove e∗ fromU .

At the end of the above algorithm, U contains no type I edge. Moreover,

∑
e ∈M se = m1 since

every Type I edge requires only one slot. Finally, for every e = (x ,y) ∈ M , se ≤ 2. This is because

any edge charged to (x ,y) must contain at least one of x or y. Now, without altering the set of

uncharged edges U , we provide a mechanism to transfer the slots to edges in T . The following
procedure is based on the observation that for every e, e ′ ∈ M such that e ′ ∈ T and e < T ,we ′ ≥ we .

(Algorithm: Phase I (Slot Transfer)) Repeat until se = 0 for every edge outside T :
pick e < T such that se > 0. Pick any edge e ′ ∈ T such that se < 2. Transfer the

edge originally charged to e to e ′, i.e., decrease se by one and increase se ′ by one.

Notice that at the end of the above mechanism,

∑
e ∈T se =m1, se ≤ 2 for all e ∈ T , and se = 0 for

all e ∈ M \T . □

Now, consider any type II edge e∗. We make a strong claim: for every e ∈ M ,we ≥
1

2
we∗ . This

follows from Lemma 2.5 since at the instant when e was added toM , e was an undominated edge in

the edge set E and e∗ was also present in the edge set. Therefore, each type II edge can be charged

using two (unit) slots from any of the edges inM (or any combination of them). We now describe

the second phase of our charging algorithm that charges nodes only to edges inM \T , recall that
there k − m1

2
such edges.

(Second Phase) Repeat until se = 2 for all e ∈ M \T (or) untilU is empty: pick any

arbitrary edge e∗ fromU and e ∈ M \T such that se = 0. Sincewe∗ ≤ 2we , charge

e∗ using two slots of e , i.e., increase se by two and remove e∗ fromU .

During the second phase, every edge in M∗ is charged to exactly (two slots of) one edge in

M \T . Therefore, the number of edges removed fromU during this phase is min (m2,k −
m1

2
). Since

the number of uncharged edges at the beginning of Phase I was exactly m2, we conclude that

the number of uncharged edges at the end of the second phase, i.e., |U | is min (0,m2 − k +
m1

2
). If
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|U | = 0, we are done, otherwise we can charge the remaining edges inU uniformly to all the edges

inM using a fractional number of slots, i.e.,

(Third Phase) Repeat untilU = ∅: pick any arbitrary edge e∗ fromU . Sincewe∗ ≤

2we for all e ∈ M , charge e∗ uniformly to all edges inM , i.e., increase se by
2

k for

every e ∈ M and remove e∗ fromM∗.

Now, in order to complete our analysis, we need to obtain an upper bound for se over all edges
in e . Recall that at the end of phase II, se ≤ 2 for all e ∈ M . In the third phase, se increased by

2

k for

every edge inU , and the number of edges inU is min (0,m2 − k +
m1

2
). Therefore, at the end of the

third phase, we have that for every e ∈ M ,

se ≤ 2 +
2

k
[min (0,m2 − k +

m1

2

).]

Sincem1 +m2 = k
∗
, we can simplify the second term above and get

se ≤ 2 +
2

k
[min (0,

m2

2

+
k∗

2

− k )] (3)

= 2 +min(0,
m2 + k

∗

k
− 2)] = min(2,

m2 + k
∗

k
). (4)

How large canm2 be? Clearly,m2 ≤ k∗. But a more careful bound can be obtained using the fact

that them2 Type II edges have no node in common with any of the k edges in M . But the total

number of nodes is N , therefore, 2m2 + 2k ≤ N orm2 ≤
N
2
− k . This gives usm2 ≤ min(k∗, N

2
− k ).

Depending on what the minimum is, we get two cases:

(1) Case I: k∗ ≤ N
2
− k or equivalently, k∗ + k ≤ N

2
. Substitutingm2 ≤ k∗ in Equation 3, we

get that for all e , se ≤ min(2, 2k∗
k ). Replacing k by α N

2
and k∗ by α∗ N

2
, we get that when

α + α∗ ≤ 1, se ≤ min(2, 2α ∗
α ).

(2) Case II: k∗ ≥ N
2
− k or equivalently α∗ + α ≥ 1. Substitutingm2 ≤

N
2
− k in Equation 3, we

get that se ≤ min(2,
N
2
+ k∗ − k

k
) or equivalently se ≤ min(2, α

∗+1

α − 1).

□

Now, we proceed with the proof of the theorem. By linearity of expectation, E[w (M )] =
0.5(E[w (M1)] + E[w (M2)]). Now, look at the first algorithm, since M0 has two-thirds as many

edges as the optimum matching, we get from Lemma 3.2 thatw (M0) ≥
1

2
w (OPT ). As mentioned

in the algorithm, B is the set of nodes that are not present in M0; since we randomly match the

nodes in B to other nodes in B, the expected weight of the random algorithm (from Lemma 2.7 with

n = N
3
) is

3

N
∑

(x,y )∈B w (x ,y). Therefore, we get the following lower bound on the weight ofM1,

E[w (M1)] ≥
OPT

2

+
3

N

∑
(x,y )∈B

w (x ,y).

Next, look at the second algorithm: half the edges fromM0 are added toM2. A constitutes the

set of
N
3
nodes from M0 that are not present in M2, these nodes are randomly matched to those

in B. Let MAB denote the matching going ‘across the cut’ from A to B. Since the set A is chosen
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randomly from the nodes in Top, the expected weight of the matching from A to B is given by,

E[w (MAB )] =
∑

S ⊂Top
|S |= N

3

E [w (MAB ) | (A = S )] Pr (A = S )

=
∑

S ⊂Top
|S |= N

3

Pr (A = S )
∑

(x,y )∈S×B

3

N
w (x ,y)

=
∑

(x,y )∈Top×B

3

N
w (x ,y)Pr (x ∈ A)

=
∑

(x,y )∈Top×B

3

N
w (x ,y) ×

1

2

.

The second equation above comes from Lemma 2.7 Part 2 for n = N
3
, and the last step follows

from the observation that Pr (x ∈ A) is exactly equal to the probability that the edge containing x
inM0 is not added toM2, which is one half (since the edge is chosen with probability 0.5). We can

now bound the performance ofM2 as follows,

E[w (M2)] =
1

2

E[w (M0)] + E[w (MAB )]

=
1

2

w (M0) +
3

2N

∑
(x,y )∈Top×B

w (x ,y).

Now, let us apply Lemma 2.8 to the setT = B (n = N
3
), withOPT being the matching: we get that

w (OPT ) ≤ 6

N
∑

x ∈B,y∈B w (x ,y)+ 3

N
∑

x ∈Top,y∈B w (x ,y) or equivalently 3

2N
∑

(x,y )∈Top×B w (x ,y) ≥
w (OPT )

2
− 3

N
∑

x ∈B,y∈B w (x ,y). Substituting this in the above equation forM2 along with the fact

that w (M0) ≥
w (OPT )

2
, we get the following lower bound for the performance of M2 in terms of

OPT,

E[w (M2)] ≥
w (OPT )

4

+
w (OPT )

2

−
3

N

∑
x ∈B,y∈B

w (x ,y).

Recall that

E[w (M1)] ≥
w (OPT )

2

+
3

N

∑
x ∈B,y∈B

w (x ,y).

The final bound comes from adding the two quantities above and multiplying by half. □

3.2 Truthful Mechanisms for Matching
In Section 2, we looked at three simple approaches for designing truthful mechanisms for the

maximum weighted matching problem, all of which yield truthful 2-approximations to the op-

timum matching. Can we do any better without sacrificing truthfulness? Previously, we used a

complex interleaving of greedy and random approaches to extract a non-truthful 1.6-approximation

algorithm. Now, we present a simpler algorithm and rather surprising result: a simple random

combination of Algorithms 1 and 2 results in a 1.77-approximation to the optimum matching. The

main insight driving this result is the fact that the random and greedy approaches are in some

senses complementary to each other, i.e., on instances where the approximation guarantee for the

greedy algorithm is close to 2, the random algorithm performs much better.
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. . . . . .

. . . . . .

GR (T )
N
4
edges

GR (B)
N
4
edges

GR (B1)
χN

2
edges

GR (B2)
(1−2χ )N

4
edges

GR
N
2
edges

Fig. 1. An illustration of the greedy matching (GR specifies the edges in the greedy matching) partitioned
into three subsets:Gr (T ),Gr (B1),Gr (B2) withGr (B) = Gr (B1) ∪Gr (B2) andGr = Gr (T ) ∪Gr (B1) ∪Gr (B2).
The edges depicted are arranged in the decreasing order of weight from top to bottom so that (i ) every edge
inGR (T ) has larger weight than any edge inGR (B) and (ii ) every edge inGR (B1) has larger weight than any
edge in GR (B2).

Theorem 3.4. The following algorithm is a universally truthful mechanism for the maximum
weighted matching problem that obtains a 1.7638-approximation to the optimum matching.
Greedy-RandomMix Algorithm forMaximumWeightedMatching: With probability 3

7
, return

the output of Algorithm 1 for k = N
2
and with probability 4

7
, return the output of Algorithm 2 for

k = N
2
.

Proof. Our proof mainly involves non-trivial lower bounds on the performance of the random

matching which highlight its complementary nature to the greedy matching. We first define some

important notation that allows us to partition the greedy matching into three components and

quantify their weight separately. An illustration of this partition can be seen in Figure 1.

Notation. : Suppose that GR denotes the output of the greedy matching algorithm for the given

instance, and RD is the random matching for the same instance.

(1) Let GR (T ) and GR (B) denote the sub-matchings of GR of size
N
4
containing the highest-

weight and lowest-weight edges in GR respectively, i.e., |GR (T ) | = |GR (B) | = |GR |
2

.

(2) Suppose that χ is the weight of the edges in B relative to the optimum matching, i.e.,

χ =
w (GR (B))

w (OPT )
.

(3) Let GR (B1) be the sub-matching of GR (B) containing the
χN
2

highest-weight edges in

GR (B) and let GR (B2) = GR (B) \GR (B1).
(4) LetT ,B,B1,B2 denote the set of nodes that form the edges inGR (T ),GR (B),GR (B1),GR (B2)

respectively.

Proof Outline. Although our algorithm is extremely simple, the proof is technically involved so

we first outline the key ideas in the proof. As per definition, the weight of the greedy matching is

given byw (GR) = w (GR (T )) +w (GR (B)). Our first step is to prove thatw (GR (T )) ≥ w (OPT )
2

: this

ACM Transactions on Algorithms, Vol. 1, No. 1, Article 1. Publication date: March 2018.



1:18 E. Anshelevich and S.Sekar

is done via a charging argument similar to the one used in Lemma 3.2. It then follows that:

w (GR) = w (GR (T )) +w (GR (B)) ≥
1

2

w (OPT ) + χw (OPT ). (5)

If χ is large, then the greedy algorithm already obtains a good approximation to the optimum

matching. Our next step is to show that when χ is small, the random matching gives us an

approximation factor better than half. This statement is formalized in the following lemma.

Lemma 3.5. The weight of the random matching is always at least

E[w (RD)] ≥
5

8

w (OPT ) − χ (1 −
3

2

χ )w (OPT ).

Moreover, when χ ≤ 1

8
, the following is a tighter lower bound for the random matching

E[w (RD)] ≥
5

8

w (OPT ) − χ (1 − 2χ )w (OPT ).

The main idea behind the above lemma is that when χ is small, the weight of the greedy matching

on the nodes in B is small, and therefore, a large number of the heavy edges in the matching go

‘across the cut’ fromT to B. The random matching is able to select these edges with high probability

leading to an improved approximation factor when compared to the greedy matching.

The final approximation bound follows directly from Lemma 3.5. We show this in two cases

depending on whether or not χ ≤ 1

8
.

Case I: χ ≤ 1

8
. Recall that we pick the random matching with probability p = 4

7
and the greedy

mathing with probability 1 − p = 3

7
. Suppose we usew (M ) to denote the weight of the matching

returned by our algorithm. Then applying Equation 5 and Lemma 3.5, we get,

E[w (M )] = (1 − p) ·w (GR) + p ·w (RD)

≥ w (OPT ){(1 − p) (
1

2

+ χ ) + (p) (
5

8

− χ + 2χ 2)}

= w (OPT ){
1

2

+ p
1

8

+ χ (1 − 2p) + 2pχ 2}

Given p = 4

7
, the quantity χ (1 − 2p) + 2pχ 2

is minimized at χ = 1

2
− 1

4p =
1

16
. Substituting the

values for p, χ (that result in the worst-case guarantee), we obtain
w (OPT )
E[w (M )] ≤ 1.7638.

Case II: χ ≥ 1

8
. In this case, we need to use a weaker lower bound for RD, also provided in

Lemma 3.5.

E[w (M )] = (1 − p) ·w (GR) + p ·w (RD)

≥ w (OPT ){(1 − p) (
1

2

+ χ ) + (p) (
5

8

− χ +
3

2

χ 2)}

= w (OPT ){
1

2

+ p
1

8

+ χ (1 − 2p) +
3

2

pχ 2}

The expression in the final line is a non-decreasing function of χ in the range [
1

8
, 1

2
]
2
and so, its

minimum value is attained at χ = 1

8
. Substituting this value above, we get

w (OPT )
E[w (M )] ≤ 1.7638. This

completes the proof outline.

(Proof) Given the steps outlined above, it only remains for us to prove that (i ) w (GR (T )) ≥
1

2
w (OPT ) and (ii ) Lemma 3.5 holds. We do so below.

2
Note that χ ≤ 1

2
because w (GR (T )) + χw (OPT ) ≤ w (OPT ) and w (GR (T )) ≥ 1

2
w (OPT ).
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Lemma 3.6.

w (GR (T )) ≥
w (OPT )

2

.

Proof. We proceed via the standard charging argument applied to prove the half-optimality of

the greedy algorithm. Pick any edge in OPT , say e = (x ,y), if (x ,y) ∈ GR, we charge the edge to
itself. Otherwise, at least one of x or y must be matched to an edge that yields it the same or better

utility, i.e., w.l.o.g, ∃(x , z) ∈ GR such thatw (x , z) ≥ w (x ,y). In this case, we charge (x ,y) to (x , z).
Clearly, every edge in GR has anywhere between 0 to 2 edges (from OPT ) assigned to it.

For any e ∈ GR, suppose that se is the number of edges fromOPT assigned to e . By our charging

argument, the following inequality must be true,

OPT ≤

N
2∑

i=1

wei sei ,

where ei is the i
th

largest edge belonging toGR. Observe that
∑ N

2

i=1
sei =

N
2
. Consisder an alternative

‘slot vector’, (q)ei ∈GR such that qei = 2 if i ≤ N
4
and qei = 0 otherwise. Sincewei ≥ wej whenever

i < j, it is not hard to deduce that:

N
2∑

i=1

wei sei ≤

N
2∑

i=1

weiqei = 2w (GR (T )).

□

Before proving Lemma 3.5, we state two useful but technical propositions.

Proposition 3.7.

(1) No edge in GR (B2) can have a weight larger thanw∗ B 2GR (B1 )
χN .

(2) For any given instance, we have that 2χ ≤ χ1 B
w (GR (B1 ))
w (GR (B )) .

The first part is true because this is the average of the edge weights in GR (B1), which must be

larger than the weight of any edge in GR (B2). The second part comes from the fact that GR (B1)
consists of

xN
2

edges whereas GR (B) consists of N
4
edges. From now on, we use χ1 to denote the

quantity
w (GR (B1 ))
w (GR (B )) . Note that when χ1 is smaller than

1

2
, the weights of the edges in GR (B) are

somewhat evenly distributed across GR (B1) and GR (B2).
Given a set S ⊆ N (e.g., S = T ,B,B1,B2), we abuse notation and use w (S ) to denote the

quantity

∑
x,y∈S w (x ,y). Similarly, given two distinct sets S1, S2 ⊆ N , we usew (S1, S2) to represent∑

x ∈S1,y∈S2
w (x ,y). The following proposition relates the weight of quantities such asw (T ),w (B),

etc. to the weight of edges in the greedy matching: its proof uses similar ideas as the proofs of

Lemmas 2.8 and 2.7 as well as new insights on the greedy matching. However, owing to its rather

technical nature, the proof is deferred to Appendix D.

Proposition 3.8. The following inequalities hold:

w (B1,B2) ≤ 2w (GR (B1)) |B2 | (6)

w (B2) ≤ 2w (GR (B2)){|B2 | −
w (GR (B2))

w∗
} (7)

w (B) ≤ 2|B |w (GR (B)) (1 − 2χ ) when χ1 ∈ [0,
1

2

] (8)
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All that remains is for us to actually prove Lemma 3.5.

(Proof of Lemma 3.5) We prove this lemma in three parts depending on the values of χ , χ1.

(1) (Part 1: χ ≥ 0, χ1 ≥
1

2
)w (RD) ≥ 5

8
w (OPT ) − χ (1 − 3

2
χ )w (OPT ).

(2) (Part 2: χ ≤ 1

8
, χ1 ≥

1

2
)w (RD) ≥ 5

8
w (OPT ) − χ (1 − 2χ )w (OPT ).

(3) (Part 3: χ ≤ 1

4
, χ1 ≤

1

2
)w (RD) ≥ 5

8
w (OPT ) − χ (1 − 2χ )w (OPT ).

Clearly, the above three parts are sufficient to prove the claim made in the statement of Lemma 3.5.

Note that since χ1 ≥ 2χ , there is no need to consider the case where χ ≥ 1

4
, χ1 ≤

1

2
. We tackle the

three parts sequentially.

(Part 1: χ ≥ 0, χ1 ≥
1

2
). The expected weight of the random matching can be expressed as

E[w (RD)] ≥
1

N
(w (T ) +w (T ,B) +w (B)) . (9)

However, applying Lemma 2.8 with T = B,S = N and M = OPT , we get that 1

N (w (T ,B) +
w (B)) ≥ w (OPT )/2 −w (B)/N . Substituting this into Equation 9 gives us:

E[w (RD)] ≥
1

2

w (OPT ) +
1

N
{w (T ) −w (B)}. (10)

Alternatively, we can also apply Lemma 2.8 with T = B2,S = N and M = OPT to get that:

1

|B2 |
(w (T ∪ B1,B2) +w (B2)) ≥ w (OPT ) −w (B2)/|B2 |. This gives us.

E[w (RD)] ≥
1

N
{w (T ) +w (T ,B1) +w (B1) +

|B2 |

N
w (OPT ) −w (B2)} (11)

Adding Equations 10 and 11, dividing by two, and substituting
|B2 |

N =
1

2
− χ , we get:

E[w (RD)] ≥
1

2

w (OPT ) −
χ

2

w (OPT ) +
1

N

(
w (T ) +

1

2

(w (T ,B1) −w (B1,B2)) −w (B2)
)
. (12)

Applying Lemma 2.8 with T = S = T , M = GR (T ) and w (GR (T )) ≥ w (OPT )
2

, we get that
w (T )
N ≥

1

8
w (OPT ). Now for every edge e = (x ,y) in GR (T ), note that the triangle inequality implies that

for any node z ∈ B1, w (x , z) + w (y, z) ≥ w (x ,y). Summing these up, we get that w (T ,B1) ≥
|B1 |w (GR (T )) ≥ |B1 |w (OPT )/2. Substituting these lower bounds forw (T ) andw (T ,B1) back into

Equation 12, we get a slightly simplified expression.

w (RD) ≥
5

8

w (OPT ) −
χ

4

w (OPT ) −
1

N
{
1

2

w (B1,B2) +w (B2)}. (13)

From Proposition 3.8, Equation 6, we get thatw (B1,B2) ≤ 2w (GR (B1)) |B2 | = 2χ1 ·χw (OPT ) (1/2−
χ )N . To complete the proof, we have to provide an upper bound onw (B2). To do so, we can directly

apply Equation 7 from Proposition 3.8 to obtain:

w (B2) ≤ 2w (GR (B2)) (
N

2

− χN − t ),

where t = w (GR (B2 ))
w∗ =

N (1−χ1 )χw (OPT )
2χ1w (OPT ) =

N (1−χ1 )χ
2χ1

. In conclusion, we have that

1

N
w (B2) ≤ (1 − χ1)χw (OPT ) (1 − 2χ −

1 − χ1

χ1

χ ) ≤ (1 − χ1)χw (OPT ) (1 − 2χ ). (14)
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Combining the above equation with our upper bound onw (B1,B2), we get that:

1

2N
w (B1,B2) +

1

N
w (B2) ≤ χ1 · χw (OPT ) (1/2 − χ ) + (1 − χ1)χw (OPT ) (1 − 2χ )

= χw (OPT ) (1/2 − χ ) (χ1 + 2 − 2χ1) (15)

≤ χw (OPT ) (1/2 − χ )
3

2

(Since χ1 ≥
1

2

)

=
3

4

χw (OPT ) −
3

2

χ 2w (OPT ).

Plugging the final inequality into Equation 13 completes the proof of Part I. □
(Part 2: χ ≤ 1

8
, χ1 ≥

1

2
) The proof of the second part picks up from the previous part with only a

few simple tweaks. Specifically, from Equation 15, we have that

1

2N
w (B1,B2) +

1

N
w (B2) ≤ χw (OPT )

[
χ1 (1/2 − χ ) + (1 − χ1) (1 − χ −

χ

χ1

)

]
.

Using basic calculus, we infer that the expression inside the square parenthesis attains its

maximum value for χ1 =
1

2
in the given range of χ . Therefore, substituting χ1 =

1

2
, we get

1

2N
w (B1,B2) +

1

N
w (B2) ≤ w (OPT ){

χ

4

−
χ 2

2

+
χ

2

−
3

2

χ 2}.

Directly plugging this upper bound into Equation 13 completes the proof of the second part. □
(Part 3: χ ≤ 1

4
, χ1 ≤

1

2
) Consider Equation 10,

w (RD) ≥
1

2

w (OPT ) +
1

N
{w (T ) −w (B)}.

Once again, applying Lemma 2.8 with T = S = T ,M = GR (T ) andw (GR (T )) ≥ w (OPT )
2

, we get

that
w (T )
N ≥ 1

8
w (OPT ). Therefore, it suffices to prove an upper bound on

w (B )
N . Recall that B consists

of exactly n = N
2
nodes, GR (B) = χw (OPT ), and w (GR (B1)) = χ1 · χw (OPT ) ≤ 1

2
χw (OPT )

since χ1 ≤
1

2
by assumption in this part of the proof. So, directly applying Equation 8 within

Proposition 3.8, we get that,

1

n
w (B) =

2

N
w (B) ≤ 2w (GR (B)) (1 − 2χ ).

So,
1

Nw (B) ≤ χw (OPT ) (1−2χ ). Putting this inside Equation 11 along withw (T )/N ≥ w (OPT )/8,
we complete the proof of this part of the lemma. □

Lemma 3.5 follows. □

3.3 Lower Bound Example for Ordinal Matchings
Before concluding this section, it is important to understand the limitations of ordinal information.

As mentioned in the Introduction, different sets of weights can give rise to the same preference

ordering, and therefore, we cannot suitably approximate the optimum solution for every possible

weight. We now show that even for very simple instances, there can be no deterministic 1.5-
approximation algorithm, and no randomized 1.25-approximation algorithm for maximumweighted

matching.

Claim 3.9. No deterministic ordinal approximation algorithm can provide an approximation factor
better than 1.5, and no randomized ordinal approximation algorithm can provide an approximation
factor better than 1.25 for Maximum Weighted Matching. No ordinal algorithm, deterministic or
randomized can provide an approximation factor better than 2 for Max k-Matching.
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Proof. Consider an instance with 4 nodes having the following preferences: (i ) a : b > c > d ,
(ii ) b : a > d > c , (iii ) c : a > b > d , (iv ) d : b > a > c . Since the matching {(a,d ), (b, c )} is weakly
dominated, it suffices to consider algorithms that randomize between M1 = {(a,b), (c,d )}, and
M2 = {(a, c ), (b,d )}, or deterministically chooses one of them.

Now, consider the following two sets of weights, both of which induce the above preferences but

whose optima areM2 andM1 respectively:W1 := w (a,b) = w (a, c ) = w (b,d ) = w (a,d ) = w (b, c ) =
1,w (c,d ) = ϵ , andW2 := w (a,b) = 2,w (a, c ) = w (b,d ) = w (c,d ) = w (a,d ) = w (b, c ) = 1. The best

deterministic algorithm always chooses the matching M2, but for the weightsW2, this is only a

3

2
-approximation to OPT.

Consider any randomized algorithm that choosesM1 with probability x , andM2 with probability

(1 − x ). With a little algebra, we can verify that just forW1, andW2, the optimum randomized

algorithm has x = 2

5
, yielding an approximation factor of 1.25.

For the Max k-Matching problem, our results are tight. For small values of k , it is impossible for

any ordinal algorithm to provide an approximation factor better than two. To see why, consider

an instance with 2N nodes {a1,b1,a2,b2, . . . ,aN ,bN }. Every ai ’s first choice is bi and vice-versa,

the other preferences can be arbitrary. Pick some i uniformly at random and setw (ai ,bi ) = 2, and

all the other weights are equal to 1. For k = 1, it is easy to see that no randomized algorithm can

always pick the max-weight edge and therefore, as N → ∞, we get a lower bound of 2. □

4 DENSEST K-SUBGRAPH
Previously, we considered the Maximum Weighted Matching problem and presented both truthful

and non-truthful algorithms that improve upon the naive guarantee. Here, we move on to the

somewhat harder Densest k-subgraph problem and present approximation algorithms for both the

information models. It is important to note that the metric Densest k-subgraph problem is NP-Hard

even when the weights are fully known [24, 41]. Finally, given any set S ⊆ N , node x ,w (S ) will
denote the total weight of the edges inside S , andw (x , S ) :=

∑
j ∈S w (x , j ).

4.1 Ordinal Densest k-Subgraph without Truthfulness
Our 4-approximation for Densest k-subgraph comes via a black box reduction to the Max k-
matching problem. Specifically, we show how to convert a matching into a feasible solution for

densest subgraph with only a factor two loss in approximation. In combination with the greedy

algorithm, this gives a factor 4 for densest subgraph.

Theorem 4.1. We can compute in polynomial time a 4-approximation to the optimum for Densest
k-subgraph.

The algorithm is as follows: Use algorithm 1 to compute a matchingM of size k
2
. Return the nodes

that form the endpoints of the edges inM as a solution for Densest k-subgraph.

Proof. Once again, we useM∗ to denote the optimum
k
2
-matching andM to denote the solution

returned by Algorithm 1. Let O be the optimum solution to the Densest k-subgraph problem for

the given value of k . Then our algorithm simply returns the solution S comprising of the endpoints

of all the edges inM .

First, we establish a lower bound on the quality of our solution S in terms of the weight ofM .
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w (S ) =
∑

(x,y )∈S

w (x ,y)

≥
k

2

w (M ) (Lemma 2.8).

Next, we present an upper bound for the optimum solution in terms of the weight ofM∗. Suppose
thatM∗ (O ) is the optimum matching that can be formed using the nodes in O .

w (O ) =
∑

(x,y )∈O

w (x ,y)

≤ kw (M∗ (O )) (Lemma 2.7)

≤ kw (M∗).

To conclude, it suffices to show that the solution returned by the greedy matching algorithmM is a

2-approximation to the optimum k-matchingM∗. This follows from Lemma 3.2. □

4.2 Truthful Algorithm for Densest k-Subgraph
In this section we present our truthful, ordinal algorithm for Densest k-subgraph, which requires

techniques somewhat different from the ones outlined in Section 2.While “conventional" approaches

such as Greedy and Serial Dictatorship do lead to good approximations for this problem, they are

not truthful, whereas random approaches are truthful but result in poor worst-case approximation

factors. We combat this problem with a somewhat novel approach that combines the best of both

worlds by designing a semi-oblivious algorithm that has the following property: if agent i is included
in the solution, then changing her preference ordering si does not affect the mechanism’s output.

ALGORITHM 5: Hybrid Algorithm for Densest k-Subgraph

Input: N ,k ;
S := ∅, T is the set of available agents initialized to N ;

while |S | < k do
pick an anchor agent a and another node x , both uniformly at random from T ;

let b denote a’s most preferred agent in T − {a,x };

with probability
1

2
, add a,x to S , and set T = T − {a,x };

with probability
1

2
, add b,x to S and set T = T − {a,b,x };

end

Theorem 4.2. Algorithm 5 is a universally truthful mechanism that yields a 8-approximation for
the Densest k-Subgraph problem.

To see why this is truthful, note that for any particular choice of the anchor agent a, the only case

in which a’s preference ordering makes a difference is when a is definitely not added to the final set

of chosen nodes. Therefore, by lying, a cannot influence her utility in the event that she is actually

chosen.

Remark on size ofkWithout loss of generality, we assume thatk ≤ N
2
so thatT does not become

empty before |S | = k . When k ≥ N
2
, there is a trivial algorithm that yields a 8-approximation to the

optimum densest subgraph (see Appendix E). Since we are interested in asymptotic performance

bounds, we also assume that k is even.
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Proof. We begin by defining some notation pertinent to the analysis. For any given set H ⊆ N ,

letAlдr (H ) denote the (random) solution output by Algorithm 5 for the inputsH , r—i.e., the Densest
r -subgraph returned by our algorithm on the set of nodes in H . Similarly, let OPTr (H ) denote the
optimum densest subgraph for this specific instance. Next, let us examine the inner workings of the

algorithm. In any given round, the algorithm select an ordered triplet ∆ B {a,x ,b} ⊂ T , where a is

referred to as the anchor node, x is a node selected uniformly at random, and b is a’s most preferred

agent in T − {a,x }. Given ∆, the algorithm adds either a,x or b,x to S with equal probability.

(Outline of Proof) We prove by induction that for any given set
3 T ⊆ N , w (OPTr (T )) ≤

8E[w (Alдr (T ))]—the induction proceeds on even values of r . Suppose that ∆ = {a,x ,b} denotes
the random triplet selected by the algorithm in the first round. Our proof is based on charging the

weight of the edges in both OPTr (T ) and Alдr (T ) to the edge (a,b). More specifically, we identify

special nodes p,q ∈ OPTr (T ) and using these as intermediaries, show that,

(Upper Bound) w (OPTr+2 (T )) −w (OPTr (T2)) ≤ 4(r + 1)w (a,b)

(Lower Bound) E[w (Alдr+2 (T ))] − E[w (Alдr (T2))] ≥
r + 1

2

w (a,b),

where T2 denotes the remaining nodes in T after the algorithm discards either a,x or a,b,x with

equal probability. The rest of the proof is based on applying the induction hypothesis for the set T2

and parameter r . Finally, we also identify a corner-case in which the upper bound for OPTr+2 (T )
does not follow from standard techniques—this corresponds to the scenario where ∆ ⊂ OPTr+2 (T )
and our algorithm removes three nodes that belong to the optimum solution (with probability

one-half). For this case alone, we redo the analysis and derive stronger upper bounds using the

simple fact that for any i ∈ OPTr+2 (T ),w (a, i ) ≤ max(w (a,x ),w (a,b)).
Before showing our induction hypothesis, we state an independent claim that will be useful later.

Proposition 4.3. The following statements hold:

(1) Consider any set of nodes T , and suppose that for some x ∈ T , y denotes x ’s most preferred
node in T . Then for every i, j ∈ T , we have thatw (i, j ) ≤ 2w (x ,y).

(2) Consider any two sets of nodesO,T such thatO ⊆ T and let p ∈ T . Then,w (p,O ) ≤ |O |w∗max ,
wherew∗max is the highest weight edge that can be formed using the nodes in T .

(3) Consider a set of nodes O and any two nodes i, j. Then,w (i,O ) +w (j,O ) ≥ |O |w (i, j ).

Proof. The proof of the first statement is similar to that of Lemma 2.5. Indeed, using the

triangle inequality, we see thatw (i, j ) ≤ w (i,x ) +w (x , j ) ≤ 2w (x ,y). The second statement is fairly

straightforward:w (p,O ) =
∑

i ∈O w (i,p) ≤
∑

i ∈O w∗max = |O |w
∗
max . The final statement comes from

the triangle inequality;w (i,O )+w (j,O ) =
∑
q∈O (w (i,q)+w (j,q)) ≥

∑
q∈O w (i, j ) = |O |w (i, j ). □

Induction Hypothesis:w (OPTr (T )) ≤ 8E[w (Alдr (T ))] for even r ≤ k and all T ⊆ N
We implicitly assume that |T | ≥ 2r as mentioned previously.

(Base Case: r = 2) w (OPT2 (T )) ≤ 8E[w (Alд2 (T ))]: The base case is quite straightforward.

Suppose thatw∗max = maxi, j ∈T w (i, j ). Clearly,w (OPT2 (T )) = w
∗
max . Suppose that ∆ = {a,x ,b} is

the triplet selected by the algorithm such that b denotes a’s most preferred node in T − {x }. Then,
it is not hard to deduce that a’s most preferred node in T is one of b or x . So, the highest weight
edge containing the node a must be either (a,x ) or (a,b).

Therefore, we can apply Proposition 4.3 (statement 1) and get thatw∗max ≤ 2 max(w (a,x ),w (a,b)).
Next, consider the set Alд2 (T ) for this fixed choice of ∆. Since Alд2 (T ) = {a,x } with probability

3
Recall that for a given set T ⊆ N and node i ∈ N , w (T ) B

∑
x,y∈T w (x, y ) and w (i, T ) =

∑
x∈T w (i, x ).
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one-half and {b,x } with probability one-half, we have the following easy inequalities:

w (Alд2 (T )) =
1

2

(w (a,x ) +w (b,x )) ≥
1

2

w (a,b) (Triangle Inequality),

w (Alд2 (T )) ≥
1

2

w (a,x ).

From the above two inequalities, we have thatw (Alд2 (T )) ≥
1

2
max(w (a,x ),w (a,b)) ≥ 1

4
w∗max =

OPT2 (T )
4

. Taking the expectation over every such triplet∆, we get thatw (OPT2 (T )) ≤ 8E[w (Alд2 (T ))].

Inductive Step: To Provew (OPTr+2 (T )) ≤ 8E[w (Alдr+2 (T ))]

We assume that w (OPTr (T
′)) ≤ 8E[w (Alдr (T

′))] for all T ′ ⊆ N . Consider a fixed instantiation

of ∆ = {a,x ,b}, the ordered triplet of nodes selected by the algorithm in its first iteration. Let

w∗a = max(w (a,b),w (a,x )), T1 = T \ {a,x }, and T2 = T \ {a,x ,b}. We show an upper bound on

w (OPTr+2 (T )) and a lower bound on E[w (Alдr+2 (T ))] in terms ofw∗a . As mentioned previously, the

proof of the upper bound proceeds in two cases—when ∆ ⊆ OPTr+2 (T ) and when |∆∩OPTr+2 (T ) | <
3.

Upper Bound Case I: |∆ ∩ OPTr+2 (T ) | < 3: We begin by defining two ‘special nodes’ p,q that

allow us to relatew (OPTr+2 (T )) tow (a,b) andw (a,x ).

• If |∆ ∩OPTr+2 (T ) | = 2, then {p,q} B ∆ ∩OPTr+2 (T ).
• If |∆∩OPTr+2 (T ) | = 1, then {p} B OPTr+2 (T )∩∆ and q is any arbitrary node inOPTr+2 (T )
that is not p.
• If |OPTr+2 (T )∩∆| = 0, thenp,q are two arbitrary but different nodes belonging toOPTr+2 (T )

Informally, we first assign the nodes common to both ∆ andOPTr+2 (T ) to p and(/or) q. If this does
not suffice, then p and q are assigned arbitrary nodes belonging toOPTr+2 (T ). As a consequence of
this careful definition, we have that the setO B OPTr+2 (T ) \ {p,q} does not contain any node in ∆.
Now, the weight of the edges inside the set OPTr+2 (T ) can be expanded as:

w (OPTr+2 (T )) = w (O ) +w (p,O ) +w (q,O ) +w (p,q).

We can rewrite the term w (p,O ) +w (q,O ) by applying Proposition 4.3(second statement) to

both p and q and adding up the resulting inequalities. This gives us,

w (p,O ) +w (q,O ) ≤ 2|O |max

i, j ∈T
w (i, j ).

Further, we know fromProposition 4.3 (statement 1) thatmaxi, j ∈T w (i, j ) ≤ 2 max(w (a,b),w (a,x )) =
2w∗a . So, we have that w (p,O ) + w (q,O ) ≤ 4|O |w∗a , where |O | = r . In summary, we can bound

OPTr+2 (T ) in terms ofw∗a as follows:

w (OPTr+2 (T )) ≤ w (O ) + 4rw∗a +w (p,q)

≤ w (O ) + (4r + 2)w∗a

≤
1

2

(w (OPTr (T1)) +w (OPTr (T2))) + (4r + 2)w∗a . (16)

The penultimate inequality stems from the fact that w (p,q) ≤ maxi, j ∈T w (i, j ) ≤ 2w∗a . Since
O ⊆ T1 and O ⊆ T2 by definition, it follows that the weight of the edges inside O is smaller than

or equal to the weight of the densest subgraph of size r that can be obtained from either T1 or T2.

Combining the two, we get thatw (O ) ≤ 1

2
(w (OPTr (T1)) +w (OPTr (T2))) , which leads to the final

inequality.

Upper Bound Case II: |∆ ∩OPTr+2 (T ) | = 3: Note that in this case, a,x ,b ∈ OPTr+2 (T ). This is a
tricky case because our algorithm (with probability one-half) removes three nodes belonging to

ACM Transactions on Algorithms, Vol. 1, No. 1, Article 1. Publication date: March 2018.



1:26 E. Anshelevich and S.Sekar

the optimum set from consideration. Let O2 = OPTr+2 (T ) \ ∆. Using the same kind of ideas as in

the previous case, we can expand on the weight of the optimum solution as follows:

w (OPTr+2 (T )) ≤ w (O2) +w (a,O2) +w (x ,O2) +w (b,O2) +w (a,b) +w (a,x ) +w (b,x ).

Since O2 ⊆ T and w∗a denotes the maximum weight of any edge connected to a inside of T ,
we have that: w (a,O2) =

∑
i ∈O2

w (a, i ) ≤
∑

i ∈O2
w∗a = (r − 1)w∗a . Moreover, we can now apply

Proposition 4.3 (statement 2) to (upper) bound w (x ,O2) + w (b,O2) by 2(r − 1) maxi, j ∈T w (i, j ),
which we know to be smaller than or equal to 4(r − 1)w∗a . Adding up the upper bounds for these

three quantities, we get that:

w (OPTr+2 (T )) ≤ w (O2) + 5(r − 1)w∗a +w (a,b) +w (a,x ) +w (b,x )

≤ w (O2) + 5(r − 1)w∗a +w
∗
a +w

∗
a + 2w∗a

≤ w (OPTr−1 (T2)) + 5rw∗a

≤ w (OPTr (T2)) + 5rw∗a . (17)

Moreover, using similar steps as in the proof of the first case, we can alternatively write out

w (OPTr+2 (T )) in terms of the setO1 B OPTr+2 (T ) \ {a,x }—this corresponds to the scenario where

our algorithm removes the nodes {a,x } from T but retains b.

w (OPTr+2 (T )) ≤ w (O1) +w (a,O1) +w (x ,O1) +w (a,x )

≤ w (O1) + rw
∗
a + 2rw∗a +w

∗
a

≤ w (OPTr (T1)) + (3r + 1)w∗a (18)

Recall thatT1 = T \{a,x }. The second inequality comes from the fact thatw (a,O1) =
∑

i ∈O1
w (a, i ) ≤∑

i ∈O1
w∗a = rw

∗
a . By adding the inequalities in (17) and (18) and then dividing by two, we can show

our final upper bound.

w (OPTr+2 (T )) ≤
1

2

(w (OPTr (T1)) +w (OPTr (T2))) +
3r + 1

2

w∗a +
5r

2

w∗a

≤
1

2

(w (OPTr (T1)) +w (OPTr (T2))) + (4r + 2)w∗a (19)

This completes the upper bounds for both cases. Despite the difference in the underlying tech-

niques, we obtain the same upper bound irrespective of whether ∆ ⊆ OPTr+2 (T ) is true or not.
For the rest of this proof, we can simply use Equation (19) (which happens to be the same as

Equation (16)) as a universal upper bound on the optimum solution.

Coming back to our induction hypothesis, now that we are done with our upper bound, we prove

a lower bound on the weight of the edges inside the set Alдr+2 (T ) for a fixed choice of ∆ = {a,x ,b}.
We abuse notation and use E[w (Alдr+2 (T ))] to refer to the expected weight of the solution returned

by our algorithm given that ∆ is the triplet selected in the first round—the expectation is over the

nodes actually added to the solution (either a,x or b,x ) as well as the random choices made by the

algorithm in subsequent rounds.

Recall thatT1 = T \ {a,x } andT2 = T \ {a,b,x }. With probability one-half, our algorithm adds the

nodes a,x to the final solution. In this case, the weight of the solution returned by our algorithm

equals

E[w (Alдr (T1))] +w (a,Alдr (T1)) +w (x ,Alдr (T1)) +w (a,x ).

If the algorithm adds the nodes b,x to the final solution, then all three nodes in ∆ are discarded

from future consideration and therefore, the weight of the solution returned by the algorithm

equals

E[w (Alдr (T2))] +w (b,Alдr (T2)) +w (x ,Alдr (T2)) +w (b,x ).
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Since both of these events occur with equal probability, the actual solution returned by our

algorithm for a fixed choice of ∆ can be characterized as:

E[w (Alдr+2 (T ))] =
1

2

(
E[w (Alдr (T1))] + E[w (Alдr (T2))] +w (a,Alдr (T1)) +w (x ,Alдr (T1))

+w (b,Alдr (T2)) +w (x ,Alдr (T2)) +w (a,x ) +w (b,x )

)
. (20)

We now carefully lower bound each of these terms using the third statement in Proposition 4.3.

Specifically, by applying the proposition, we get that:

w (a,Alдr (T1)) +w (x ,Alдr (T1)) ≥ rw (a,x )

w (b,Alдr (T2)) +w (x ,Alдr (T2)) ≥ rw (b,x )

Moreover, we note that rw (a,x ) + rw (b,x ) ≥ rw (a,b) by means of the triangle inequality. So,

finally, adding the two equations above leads to the following lower bound:

w (a,Alдr (T1)) +w (x ,Alдr (T1)) +w (b,Alдr (T2)) +w (x ,Alдr (T2)) ≥ r max(w (a,b) +w (a,x )) = rw∗a .

Using this and the fact thatw (a,x ) +w (b,x ) ≥ w∗a we can simplify Equation (20):

E[w (Alдr+2 (T ))] ≥
1

2

(
E[w (Alдr (T1))] + E[w (Alдr (T2))] + rw

∗
a +w

∗
a

)
≥

1

2

(
E[w (Alдr (T1))] + E[w (Alдr (T2))] + (r + 1)w∗a .

)
(21)

Armed with the upper bound in Equation (19) as well as the lower bound in Equation (21), we

are now ready to complete the proof. Consider the upper bound in Equation 19 and recall that

by the induction hypothesisw (OPTr (T1)) ≤ 8E[w (Alдr (T1))] andw (OPTr (T2)) ≤ 8E[w (Alдr (T2))].
Therefore, we have that

w (OPTr+2 (T )) ≤
1

2

(w (OPTr (T1)) +w (OPTr (T2))) + (4r + 2)w∗a

≤
1

2

(8E[w (Alдr (T1))] + 8E[w (Alдr (T2))]) + (4r + 2)w∗a

≤ 8

(
1

2

E[w (Alдr (T1))] +
1

2

E[w (Alдr (T2))] +
(r + 1)

2

w∗a

)
= 8E[w (Alдr+2 (T ))] From Equation (21))

Taking the expectation over ∆, we prove the induction hypothesis. Consequently, the actual

theorem follows from substituting T = N and r = k in the induction hypothesis. □

4.3 Lower Bounds
Claim 4.4. No ordinal approximation algorithm, deterministic or randomized, can provide an

approximation factor better than 2 for Densest k-subgraph.

Proof. Since randomized algorithms are more general than deterministic algorithms, it suffices

to show the claim just for randomized algorithms.

Given a parameter k , consider an instance of Densest k-Subgraph with Mk nodes for a large

enough value ofM (sayM is much larger than k). The set of nodes in the graph can be divided into

M clusters N1,N2, . . . ,NM , each containing k nodes. The preference ordering is given as follows:

for a given i , every node in Ni prefers all the nodes in Ni over every node outside of Ni . The exact

preference ordering within Ni and outside of Ni can be arbitrary.
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Now, randomly choose one ofM clusters and assign a weight of 2 to all the edges strictly inside

that cluster. Assign a weight of 1 to every other edge in the graph. It is easy to see that these weights

induce the given preference orderings. Now, without loss of generality, it suffices to consider only

algorithms that choose k nodes within a fixed cluster. Moreover, since the clusters are identical

from an ordinal point of view, the optimum ordinal algorithm for this instance just picks one of the

M clusters uniformly at random, and therefore, its approximation ratio is
2

1+ 1

M
which approaches 2

asM → ∞ □

5 ORDINAL APPROXIMATION ALGORITHMS FOR GENERAL GRAPH
MAXIMIZATION PROBLEMS

In the previous sections, we provided ordinal approximation algorithms for matching and densest

subgraph. All of our algorithms were based on the simple techniques of greedy and random as well

as serial dictatorship, which essentially combines the two approaches. Now, we further highlight

the power of these paradigms for settings with ordinal information by showing that they lead

to approximation algorithms with small constant factors for a number of graph maximization

problems such as k-sum Clustering, Max Spanning Tree, Max Traveling Salesman, and Max (Weighted)
k-Vertex Cover.

The common thread that connects all of these problems is that they involve selecting a subset of

edges Ē ⊆ N ×N that satisfies some constraint in order to maximize the weight of the edges inside

Ē, i.e.,
∑

(x,y )∈Ē w (x ,y). Note that both maximum weighted matching and densest subgraph can

be cast in this framework. However, while we present direct applications of greedy, random, and

serial dictatorship algorithms in this section, our results in Section 3 and 4 are much stronger as

we combined these approaches in a non-trivial fashion to obtain better approximation guarantees.

We now formally define the problems studied in this section. We also remark that all of these

problems have been studied previously in the optimization literature with respect to specific

applications [22, 24, 26, 27, 33, 34].

• k-sum Clustering: Given an integer k , partition the nodes into k disjoint sets (S1, . . . , Sk )
of equal size in order to maximize

∑k
i=1

∑
x,y∈Si w (x ,y). (It is assumed that N is divisible

by k). When k = N /2, k-sum clustering reduces to maximum weighted matching.

This problem is NP-hard even when we have full access to the hidden graph weights

and when the weights satisfy the triangle inequality [24].

• Maximum Spanning Tree: Select a tree (a set of edges containing no cycles) Ē ⊆ E such

that for any two x ,y ∈ N , there is a path between x andy in Ē. Our objective is to maximize

the weight of the edges in Ē, i.e.,
∑

(x,y )∈Ē w (x ,y).
The problem can be solved efficiently when we have access to the edge weights as it is

equivalent to the minimum spanning tree problem.

• MaximumTraveling Salesman: (Max TSP) In the maximum traveling salesman problem,

the objective is to compute a tour T (cycle that visits each node in N exactly once) to

maximize

∑
(x,y )∈T w (x ,y).

This problem is known to be NP-hard in the full information case even when the weights

satisfy the triangle inequality [34].

• Maximum (Weighted) k-Vertex Cover: Select a subset of k vertices S in order to maxi-

mize the total weight of edges incident to S in E, i.e., maximize

∑
(x,y )∈E
{x,y }∩S,∅

w (x ,y).

This problem was first introduced in [22] and has been extensively studied amidst other

coverage problems.
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Our main theorem follows.

Theorem 5.1. We can compute in polynomial time ordinal approximation algorithms with the
following guarantees:

(1) A universally truthful 2-approximation algorithm for k-sum Clustering based on the random
algorithm.

(2) A universally truthful 2-approximation algorithm for Maximum Traveling Salesman based on
random serial dictatorship.

(3) A greedy 2-approximation algorithm for Maximum Spanning Tree.
(4) A greedy 4-approximation algorithm for Maximum (Weighted) k-Vertex Cover.

We now describe the algorithms for the four problems.

(1) k-sum Clustering: Initialize T = N . For i = 1 to k , pick a set of
N
k nodes Si uniformly at

random from T and update T = T \ Si . Output (S1, S2, . . . , Sk ).
(2) Maximum Traveling Salesman: Initialize Ē to be a random edge e0 = (x0,y0) from E,

S = N \ {x0,y0}. While S , ∅, pick one of the end-points of Ē, say x . Let y denote x ’s
most preferred agent in S . Add (x ,y) to Ē and remove y from S . Complete Ē to form a

Hamiltonian cycle, and return Ē.
(3) Maximum Spanning Tree: Initialize Ē = ∅, T = E. While T , ∅: pick an undominated

edge fromT , add it to Ē. Remove all edges fromT whose addition to Ē would induce a cycle.

Return Ē.
(4) Maximum (Weighted) k-Vertex Cover: Initialize S = ∅, T = E. While |S | < k : pick an

undominated edge (x∗,y∗) from T , set S = S ∪ {x∗,y∗}. Remove all edges containing x∗ or
y∗ from T . Return S .

Proof. Proof of 2-approximation for k-sum Clustering

The algorithm is clearly truthful since it is completely oblivious to the input. The analysis of

the algorithm involves non-trivial lower bounds on the performance of our random solution, and

upper bounds on the optimum solution analogous to Lemmas 2.7 and 2.8 respectively. Suppose

that γ = N
k .

Lemma 5.2. (Lower Bound) The expected value of the objective function for the clustering returned
by our algorithm (S1, . . . , Sk ) is given by

E[

k∑
i=1

∑
x,y∈Si

w (x ,y)] =
γ − 1

N − 1

∑
(x,y )∈N×N

w (x ,y).

Proof. As with Lemma 2.7, we proceed via a symmetry argument although it is not hard to verify

that the same bound can be obtained via a more exhaustive counting argument. First, by linearity of

expectation, we have that the value of the objective (in expectation) is

∑
(x,y )∈N×N w (x ,y)Pr (∃i s.t. x ,y ∈

Si ) where the second term is the probability that x and y belong to the same cluster in S . Using a
symmetry argument (since our process chooses nodes for each cluster uniformly at random), we

argue that the probability Pr (x ,y ∈ Si ) is the same for every x ,y ∈ N .

Now, fix any arbitrary node x ∈ N : since there γ − 1 other nodes in the same cluster as x , this

means that

∑
y,x Pr (x ,y ∈ Si ) = γ −1. Therefore, for every (x ,y), Pr (x ,y ∈ Si ) =

γ−1

N−1
. Substituting

this in the expected value of the objective function gives us the desired result. □

Lemma 5.3. (Upper Bound) Suppose that O = (O1, . . . ,Ok ) is the optimum solution for a given
instance of the k-sum Clustering problem. Then, we have the following upper bound on the value of
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the optimum solution

OPT =
k∑
i=1

∑
x,y∈Oi

w (x ,y) ≤
2(γ − 1)

N − 1

∑
(x,y )∈N×N

w (x ,y).

Proof. Suppose that x and y are two nodes belonging to the same cluster in O (say cluster Oi ).

Then, by the triangle inequality, we have that for every z ∈ N (including x andy),w (x , z)+w (y, z) ≥
w (x ,y). Summing this up over all z ∈ N , we have

∑
z∈N (w (x , z) +w (y, z)) ≥ Nw (x ,y). Repeating

this process over all (x ,y) ∈ Oi and z ∈ N , we get

k∑
i=1

∑
x,y∈Oi

∑
z∈N

(w (x , z) +w (y, z)) ≥ N
k∑
i=1

∑
x,y∈Oi

w (x ,y)

= NOPT .

Now, given some edge (x , z), how many times doesw (x , z) appear in the LHS? Without loss of

generality, suppose that x ∈ Oi and z ∈ O j . Then, x has γ − 1 edges inside Oi andw (x , z) appears
once in the LHS for each of these neighboring edges. Similarly, z has γ − 1 edges inside O j and

w (x , z) appears once in the LHS for each edge. Therefore, for every x , z ∈ N , w (x , z) appears
2(γ − 1) times in the LHS of the above equation. Substituting this, we prove the lemma,∑

x,y∈N

2(γ − 1)w (x ,y) ≥ NOPT .

□

The rest of the theorem follows immediately from the two lemmas.

Proof of 2-approximation for Max TSP
It is easy to see that this algorithm is truthful: when an agent i is asked for its preferences, the

first edge of T incident to agent i has already been decided, so i cannot affect it. Thus, to form

the second edge of T incident to i , it may as well specify its most-preferred edge. Suppose that T ∗

denotes the optimal tour and T = Ē denotes the tour returned by our algorithm.

The proof proceeds via a straightforward argument where we charge edges in T ∗, the welfare
maximizing tour, to those in T , the solution returned by our algorithm. We first introduce some

notation beginning with a simple tie-breaking rule that allows for convenient analysis. Specifically,

suppose that (a,b) denotes the first (random) edge added to T . Then, pick one of a or b (say a)
uniformly at random, and term this node as the ‘dead node’. For the rest of algorithm, a does not

get to select another edge and remains as an end-point ofT . The second edge containing a is added

only when the tour is completed to form a cycle. We remark that the randomization in the first

step is essential: if we had selected the first edge based on the input preferences, then the first node

could improve its utility by lying, and the algorithm would no longer be strategy-proof.

Next, for any i ∈ N , we will use t∗
1
(i ) and t∗

2
(i ) to denote the two nodes that i is connected to in

T ∗, and t1 (i ), t2 (i ) to the nodes connected to i in T . Finally, suppose that er denotes the random
first edge selected by the algorithm and id , the (random) dead node. In this proof, we show that

for any realization of er , id , the optimum tour is at most twice the tour returned by our algorithm.

Therefore, the same approximation bound also holds in expectation.

Fix some instantiation of er , id , call it ẽr , ĩd . Our charging argument comprises of two phases:

in the first phase, we charge to the edges in T all of the edges in T ∗ except the ones containing
the dead node ĩd . While doing so, we ensure that for each edge in T , at most two edges in T ∗ are
charged to this edge. In the final phase, we carefully charge the edges inT ∗ containing ĩd to certain

edges in T that were charged at most once in the first phase.
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First Phase Charging. Suppose that we use Si to denote the set of available nodes at the instant

in our algorithm (for this particular instantiation of er , id ) when an edge containing i is added to

T . The algorithm then proceeds to pick i’s most preferred agent in Si and adds the corresponding

edge to T . Suppose that for every i ∈ N , t2 (i ) denotes its most preferred node in Si .
Now consider any edge (x∗,y∗) in T ∗ such that x∗,y∗ , ĩd . Suppose that x

∗
was removed from

the set of available nodes before y∗ during the course of the algorithm. Then, y∗ ∈ Sx ∗ and so,

w (x∗, t2 (x
∗)) ≥ w (x∗,y∗) and we can charge the edge (x∗,y∗) ∈ T ∗ to (x∗, t2 (x

∗)) ∈ T .
After repeating this charging argument for every edge in T ∗ except (ĩd , t

∗
1
(ĩd )), (ĩd , t

∗
2
(ĩd )), we

end up with the following proposition.

Proposition 5.4. The following are true at the end of the first phase of charging.

(1) At most two edges in T ∗ are charged to any one edge in T .
(2) No edges are charged to (ĩd , t1 (ĩd )), (ĩd , t2 (ĩd )) ∈ T .
(3) At most one edge in T ∗ is charged to any of the edges in T containing t∗

1
(ĩd ), t∗2 (ĩd ).

Proof. (Statement 1) Consider any edge of the form (i, t2 (i )), as per our definitions, i became

unavailable before t2 (i ). Thus, the only edges charged to (i, t2 (i )) are those in T
∗
containing i , and

there can only be two such edges.

Statement 2 Further, suppose that (ĩd , t1 (ĩd )) denotes the random edge in T . Clearly, edges in T ∗

containing t1 (ĩd ) are not charged to the random edge. Finally, no edge inT ∗ is charged to (ĩd , t2 (ĩd )),
since the latter node is the absolute last node to become unavailable.

Statement 3 This is a direct consequence of the fact that we have not charged (ĩd , t∗1 (ĩd )), (ĩd , t
∗
2
(ĩd ))

to any edge in T . □

Second Phase Charging. We use the triangle inequality to charge the edge (ĩd , t
∗
1
(ĩd )):

w (ĩd , t
∗
1
(ĩd )) ≤ w (ĩd , t2 (ĩd )) +w (t2 (ĩd ), t

∗
1
(ĩd )) ≤ w (ĩd , t2 (ĩd )) +w (t∗

1
(ĩd ), t2 (t

∗
1
(ĩd ))).

The final inequality is due to the fact that t2 (ĩd ) ∈ St ∗
1
(ĩd ) (since t2 (ĩd ) is the absolute last

node added to the tour, and so it is available during the entire runtime of the algorithm), and so

w (t2 (ĩd ), t
∗
1
(ĩd )) ≤ w (t∗

1
(ĩd ), t2 (t

∗
1
(ĩd ))). Therefore, the edge (ĩd , t

∗
1
(ĩd )) can be charged to two edges

in T , namely (ĩd , t2 (ĩd )) and (t∗
1
(ĩd ), t2 (t

∗
1
(ĩd ))

Using exactly the same kind of argument, we can also charge the second edge containing ĩd in

T ∗ to two edges in T , namely (ĩd , t2 (ĩd )) andw (t∗
2
(ĩd ), t2 (t

∗
2
(ĩd )). This concludes the second phase

of charging.

In conjunction with Proposition 5.4, we have successfully charged every edge in OPT by using

at most two edges in T . This completes our two approximation.

Proof of 2-approximation for Maximum Spanning Tree
We suppose that the algorithm proceeds in rounds {1, 2, . . . ,N − 1}: the spanning tree contains

N nodes and exactly N − 1 edges. Suppose that Ēk and Tk denote the set of edges constituting the

partial solution and candidate pool at the beginning of round k . Let (x∗k ,y
∗
k ) be the undominated

edge from Tk selected in round k . Finally, we use OPT to denote the optimum spanning tree and

OPTk to refer to the optimum spanning tree that contains the edges in Sk . Note that OPT1 = OPT
and OPTN = Ē.
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Our proof will proceed as follows: for every k , we prove thatw (OPTk )−w (OPTk+1) ≤ w (Ēk+1)−
w (Ēk ).This simple claim suffices to prove the theorem as illustrated below.

N−1∑
i=1

w (OPTi ) −w (OPTi+1) ≤
N−1∑
i=1

w (Ēk+1) −w (Ēk )

=⇒ w (OPT1) −w (OPTN ) ≤ w (ĒN ) −w (Ē1)

=⇒ w (OPT ) −w (Ē) ≤ w (Ē)

=⇒ w (OPT ) ≤ 2w (Ē).

Note that by definition Ē1 = ∅ and so its weight equals zero. It remains for us to prove the central

claim. Fix some iteration k , and consider the spanning tree OPTk . Clearly, Ēk and Ēk+1 differ only

in the edge (x∗k ,y
∗
k ). Since OPTk is a spanning tree, there must be a path between every two nodes

in N . Let (x ,y) denote an edge that lies on the simple path between x∗k and y∗k in OPTk and also

belongs to Tk . Such an edge must necessarily exist because:

(1) No edge in E \ (Tk ∪ Ēk ) can be present in OPTk as the addition of any such edge would

induce a cycle, by definition of Tk .
(2) OPTk \ Ēk must therefore only contain edges from Tk .
(3) The nodes x∗k and y∗k are not connected in Ēk and so, the path between these nodes inOPTk

must contain at least one edge from Tk .

Next, defineO ′k = (OPTk \ {(x ,y)})∪{(x
∗
k ,y
∗
k )}. It is not hard to deduce thatO

′
k is also a spanning

tree, but perhaps most importantly, it is a spanning tree that contains all of the edges in Ēk+1.

By definition, we know that OPTk+1 is the maximum weight spanning tree that contains Ēk+1.

Therefore, we infer thatw (O ′k ) ≤ w (OPTk+1). Expanding upon this, we get:

w (OPTk+1) ≥ w (O ′k ) = w (OPTk ) +w (x∗k ,y
∗
k ) −w (x ,y). (22)

Therefore, we have that

w (OPTk ) −w (OPTk+1) ≤ w (x ,y) −w (x∗k ,y
∗
k )

≤ 2w (x∗k ,y
∗
k ) −w (x∗k ,y

∗
k ) (From Lemma 2.5)

= w (Ēk+1) −w (Ēk ).

This completes the proof that our algorithm produces a 2-approximation to the optimum maxi-

mum spanning tree.

Proof of 4-Approximation for Maximum k-Vertex Cover
This proof uses a similar approach to that of the 2-approximation algorithm for max spanning

tree, wherein we bound the difference in ‘successive optimal solutions’ in terms of the solution

returned by our algorithm. Formally, we define Sℓ to be the set containing the first ℓ nodes chosen
by our algorithm, Nℓ denotes the nodes in N \ Sℓ , Tℓ is the edge set representing the complete

graph on Nℓ , and finally, OPTℓ denotes the optimum solution to the k-vertex cover problem that

contains Sℓ . Clearly, OPT0 is the optimum solution OPT and OPTk = Sk . For any given set B ⊆ N ,

we define the value of the objective function for this solution to be:

wVC (B) =
∑
x,y∈B

w (x ,y) +
∑

x ∈B,y∈N\B

w (x ,y).
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Consider the sets Sℓ and Sℓ+2 for some 0 ≤ ℓ ≤ k − 2. Suppose that Sℓ+2 = Sℓ ∪ {xℓ,yℓ }, where
(xℓ,yℓ ) is an undominated edge in Tℓ . Recall that Nℓ+2 = Nℓ \ {xℓ,yℓ }. Therefore, we have that

wVC (Sℓ+2) = w
VC (Sℓ ) +w (xℓ,yℓ ) +

∑
z∈Nℓ+2

(w (xℓ, z) +w (yℓ, z))

≥ wVC (Sℓ ) +w (xℓ,yℓ ) +
∑

z∈Nℓ+2

w (xℓ,yℓ )

= wVC (Sℓ ) + (N − ℓ − 1)w (xℓ,yℓ ).

Next, we need to provide an upper bound for the difference in the quality of the solutions OPTℓ+2

and OPTℓ . Let us demarcate two nodes a,b ∈ OPTℓ \ Sℓ as follows:

(1) If xℓ ∈ OPTℓ , then set a = xℓ , else set a to be some arbitrary node in OPTℓ \ Sℓ that is not
yℓ .

(2) If yℓ ∈ OPTℓ , then set b = yℓ , else set b to be some arbitrary node inOPTℓ \ Sℓ that is not a.

Define N ′ = N \ (OPTℓ ∪ {xℓ,yℓ }) andO
′ = OPTℓ \ {a,b} ∪ {xℓ,yℓ } and a,b ∈ Nℓ . Observe that

by definition, N ′ ⊆ Nℓ+2. Clearly, O
′
is a candidate for the maximum (weighted) k-vertex cover

that also contains the set Sℓ+2. So, we have thatw
VC (O ′) ≤ wVC (OPTℓ+2). Expanding this, we get

that:

wVC (OPTℓ+2) ≥ wVC (O ′)

≥ wVC (OPTℓ ) −w (a,b) −
∑
z∈N ′

(w (a, z) +w (b, z)) +w (xℓ,yℓ ) +
∑
z∈N ′

(w (xℓ, z) +w (yℓ, z))

(23)

Since a,b ∈ Nℓ and (xℓ,yℓ ) is an undominated edge in Tℓ , we can apply Lemma 2.5 to get that

w (a,b) ≤ 2w (xℓ,yℓ ). In fact for all z ∈ N ′, we can apply this lemma to get w (a, z) ≤ 2w (xℓ,yℓ )
andw (b, z) ≤ 2w (xℓ,yℓ ). Continuing from Equation 23,

wVC (OPTℓ+2) ≥ wVC (OPTℓ ) −w (a,b) −
∑
z∈N ′

(w (a, z) +w (b, z)) +w (xℓ,yℓ ) +
∑
z∈N ′

(w (xℓ, z) +w (yℓ, z))

≥ wVC (OPTℓ ) − 2w (xℓ,yℓ ) −
∑
z∈N ′

(2w (xℓ,yℓ ) + 2w (xℓ,yℓ )) +w (xℓ,yℓ )) −
∑
z∈N ′

w (xℓ,yℓ )

≥ wVC (OPTℓ ) − (4|N ′ | + 2)w (xℓ,yℓ ) + ( |N ′ | + 1)w (xℓ,yℓ )

= wVC (OPTℓ ) − (3|N ′ | + 1)w (xℓ,yℓ )

≥ wVC (OPTℓ ) − (3(N − k ) + 1)w (xℓ,yℓ )

≥ wVC (OPTℓ ) − (3(N − ℓ − 2) + 1)w (xℓ,yℓ ) (24)

≥ wVC (OPTℓ ) − 3(N − ℓ − 1)w (xℓ,yℓ )

≥ wVC (OPTℓ ) − 3(wVC (Sℓ+2) −w
VC (Sℓ )).

Equation 24 comes from that (by definition) ℓ ≤ k − 2 and |N ′ | ≤ N − k . Therefore |N ′ | ≤
N − k ≤ N − ℓ − 2. In conclusion, we have that

wVC (OPTℓ ) −w
VC (OPTℓ+2) ≤ 3(wVC (Sℓ+2) −w

VC (Sℓ )).

The approximation bound of four follows from a direct telescopic summation of the above inequality

from ℓ = 0 to ℓ = k − 2 and using the fact that OPT0 = OPT and OPTk = Sk = S . □
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6 CONCLUSION
In this paper we study ordinal algorithms, i.e., algorithms which are aware only of preference

orderings instead of the hidden weights or utilities which generate such orderings. Perhaps sur-

prisingly, our results indicate that for many problems including Matching, Densest Subgraph,

and Traveling Salesman, ordinal algorithms perform almost as well as the best algorithms which

know the underlying metric weights. This indicates that for settings involving agents where it

is expensive, or impossible, to obtain the true numerical weights or utilities, one can use ordinal

mechanisms without much loss in welfare.

While many of our algorithms are randomized, and the quality guarantees are “in expectation",

similar techniques can be used to obtain weaker bounds for deterministic algorithms (bounds

of 2 for Matching and TSP, and of 4 for the other problems considered). It may also be possible

to improve the deterministic approximation factor for matching to be better than 2: although

this seems to be a difficult problem which would require novel techniques, such an algorithm

would immediately provide new deterministic algorithms for the other problems using black-box

reductions similar to one used in the proof of Theorem 4.1. Finally, our bound of 2 for TSP holds

even in the absence of the triangle inequality; it would be very interesting to see how well ordinal

algorithms perform if the weights obeyed some structure other than the metric one.
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A FRIENDSHIP NETWORKS
The classic theory of Structural Balance [16] argues that agents embedded in a social network must

exhibit the property that ‘a friend of a friend is a friend’. This phenomenon has also been observed

in many real-life networks (see for example [28]). Mathematically, if we have an unweighted social

networkG = (V ,E) of (say) friendships, it is easy to check if this property holds. If for any (i, j ) ∈ E,
(j,k ) is also an edge, then (i,k ) must also belong to E. For this reason, this property has also been

referred to as transitive or triadic closure.

What about weighted networks that capture the ‘intensity of friendships’? There is no obvious

way as to how this property can be extended to weighted graphs without placing heavy constraints

on the weights. For example, if we impose that for every edge (i, j ), and every node k , w (i,k ) ≥
min(w (i, j ),w (j,k )), we immediately condemn all triangles to be isosceles (w.r.t the weights).

Instead, we argue that a more reasonable mathematical property that extends triadic closure to

Weighted graphs is the following

Definition A.1. (α-Weighted Friendship Property) Given a social network G = (V ,E,W ), and a

fixed parameter α ∈ [0, 1

2
], for every (i, j,k ):w (i,k ) ≥ α[w (i, j ) +w (j,k )].

In a nutshell, this property captures the idea that if (i, j ) is a ‘good edge’, and (j,k ) is a good edge,
then so is (i,k ). The parameter α gives us some flexibility on how stringently we can impose the

property. Notice that in a sense, this property appears to be the opposite of the metric inequality,

here we require thatw (i,k ) is not too small compared tow (i, j ) +w (j,k ). However, we show that

this is not the case; in fact for every α ≥ 1

3
, any weighted graph that satisfies the α-Weighted

Friendship Property must also satisfy the metric inequality.

Claim A.2. Suppose that G = (V ,E,W ) is a weighted complete graph that satisfies the α -Weighted
Friendship Property for some α ∈ [

1

3
, 1

2
]. Then, for every (i, j,k ), we havew (i, j ) ≤ w (i,k ) +w (j,k ).

Proof. Without loss of generality, it suffices to show the proof for the case wherew (i, j ) is the
heaviest edge in the triangle (i, j,k ). Now considerw (i,k ),w (j,k ) and without loss of generality,

suppose thatw (i,k ) ≥ w (j,k ). Then, since the α-friendship property is obeyed, we have

w (j,k ) ≥ α[w (i, j ) +w (i,k )] ≥ αw (i, j ) + αw (j,k ).

This gives us that w (i, j ) ≤ 1−α
α w (j,k ). It is easy to verify that for α ∈ [

1

3
, 1

2
], the quantity

1−α
α ≤ 2. Therefore, we get

w (i, j ) ≤ 2w (j,k ) ≤ w (i,k ) +w (j,k ).

□

B ODD NUMBER OF AGENTS: EXTENSIONS
In many of our algorithms, we assumed that N (the number of agents) is even for the sake of

convenience and in order to capture our main ideas concisely without worrying about the boundary

cases. Here, we show that all of our algorithms can be extended to the case where N is odd or not

divisible by 3 with only minor modifications to the proofs and bounds obtained.

B.0.1 Matching. We begin by arguing that of all our algorithms and proofs for matching hold

even when N is odd. First of all, it is not hard to see that our framework does not really depend on

the parity of N and the lemmas on the greedy and random techniques carry over to the case when

N is not even. In particular, note that in Lemma 2.7, we had that E[w (MR )] ≥
|MR |
|E |

∑
x,y∈N w (x ,y),

where E is the total number of edges in the complete graph. When N is odd, |MR | =
N−1

2
, and |E | is

still
N (N−1)

2
. Therefore, we still get that E (w (MR )] ≥

1

N
∑

x,y∈N w (x ,y).
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Next, we argue that our main 1.6-algorithm still holds for arbitrary N (not divisible by two

and/or three) with an ϵ multiplicative error term that vanishes as N → ∞. In Algorithm 4, when

N is not divisible by three, we may need to choose a matching with ⌈N
3
⌉ edges for M0. Let B be

the largest matching outside ofM0, then |B | = ⌊
N
6
⌋. Then, the second sub-routine in Algorithm 4

proceeds by selecting |B | edges fromM0, and matching those nodes arbitrarily to the nodes in B.
Ideally, we would like ⌈N

3
⌉ = |M0 | = 2|B | = 2⌊ N

6
⌋. The worst case multiplicative error happens

when ⌈N
3
⌉ is much larger than 2⌊ N

6
⌋; this happens when N is odd, and has the form 3p + 2 for

some positive integer p. With some basic algebra, we can show that the multiplicative error is at

most
7

8(2N−3) , which approaches zero as N increases.

B.0.2 Max k-Sum. In the case of the black-box theorem, the 2α reduction still holds if we modify

the algorithm as follows when
N
k is odd. Instead of selecting the optimum perfect matching, we

need to select a matching of size
1

2
( Nk − 1) ∗ k = 1

2
(N − k ), assign every pair of matched nodes

to the same cluster, and the unmatched nodes arbitrarily. The rest of the proof is the same. Now

when we apply this black-box result, we can no longer invoke the 1.6-approximation algorithm for

perfect matchings and only use the 2-approximation greedy algorithm for a matching that selects

N−k
2

edges, and therefore, the black-box result only yields a 4-approximation when
N
k is odd, but

our main algorithm gives a 2-approximation algorithm irrespective of its parity.

Densest k-Subgraph. All of the proofs for the Densest k-subgraph hold. When k is odd, we simply

select a matching with ⌊ k
2
⌋ edges instead of

k
2
. The rest of the proof is exactly the same.

Max TSP. During the proofs for Max TSP, we extensively make use of the fact thatw (M∗) ≥ w (T ∗ )
2

,

whereM∗ is the optimum matching, andT ∗ is the optimal tour. This may no longer be true when N
is odd. However, suppose thatM∗f is the optimum fractional matching, it is not hard to verify that

w (M∗f ) ≥
w (T ∗ )

2
; this follows from taking T ∗ and choosing each edge with probability

1

2
. Moreover,

observe that all of our proofs in this paper for the greedy algorithm (namely Lemma 3.2) are true

when we compare the solution to the optimum fractional matching of a given size. Therefore, the

black-box result itself carries over.

C PROOF OF THEOREM 2.11
Proof. Notation: Given any set of nodes S , we use Ḡ (S ) to denote the directed first preference

graph on S defined as follows: for every i ∈ S , there is a directed edge from i to its most preferred

agent in S − {i}. Our algorithm could be viewed as selecting one edge from Ḡ (T ) uniformly at

random in each iteration, where T denotes the set of available agents.

For any set S , define S−1 ⊂ S to be the random set of nodes remaining in S after removing one

edge uniformly at random from Ḡ (S ), i.e., S−1
:= S − {i, j} with probability

1

|S | for every (i, j ) ∈ Ḡ (S ).

Finally, we define OPT (S, r ) to denote the (weight of the) maximum weight r -matching in S
(containing r edges). When it is clear from the context, we will abuse notation and use OPT (S, r )
to denote the optimum r -matching itself (as opposed to its value).

Our proof depends on the following crucial structural claim: we show that for any set S ,
OPT (S, r ) − E[OPT (S−1, r − 1)] is at most twice the weight of an edge chosen uniformly at random

from Ḡ (S ). This recursive claim implies that if at all we end up selecting a sub-optimal edge, then

this does not hurt our solution by much since E[OPT (S−1, r − 1)] is bound to be large, and we apply
the algorithm recursively on S−1

.
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Claim C.1. (Structural Claim) For any given set S ⊆ N and r ≤ |S |
2
, we have that

OPT (S, r ) ≤ E[OPT (S−1, r − 1)] +
2

|S |

∑
e ∈Ḡ (S )

w (e )

In the above claim, the expectation is taken over the different realizations of S−1
. In words, the

claim bounds the change in the optima using the ‘increase in profit’ of our algorithm. We first show

how this claim can be used to complete the proof of Theorem 2.11, and then detail the proof of

Claim C.1.

Proposition C.2. As long as Claim C.1 is obeyed for every S , r , our algorithm provides a 2-
approximation to the Max k-matching.

Proof. Suppose that the algorithm proceeds in rounds (1 to k) where in each round exactly one

edge is selected from the first preference graph. Define Si to denote the random set of available

nodes at the beginning of round i (S1 = N , and is deterministic). Then taking expectation over

Claim C.1, we get that for every i ≤ k ,

ESi [OPT (Si ,k − i + 1)] − ESi+1
[OPT (Si+1,k − i )] ≤ ESi [

2

|Si |

∑
e ∈Ḡ (Si )

w (e )].

Moreover, if we define Alдi to denote the expected weight of chosen edge in round i , the term in

the RHS is simply twice Alдi . Therefore, we can simplify the above inequality as follows.

ESi [OPT (Si ,k − i + 1)] − ESi+1
[OPT (Si+1,k − i )] ≤ 2Alдi . (25)

We also know that OPT (N ,k ) can be written as a telescoping summation, OPT (N ,k ) =∑k
i=1

E[OPT (Si ,k − i + 1)] − E[OPT (Si+1,k − i )]. After bounding the terms in the right hand

side of the summation using Equation 25, we complete the proof,

OPT (N ,k ) − E[OPT (Sk+1, 0)] ≤
k∑
i=1

2Alдi .

Since E[OPT (Sk+1, 0)] = 0, and the RHS of the above algorithm is exactly the expected weight of

the solution returned by our algorithm, the proposition follows. □
□

It only remains to prove Claim C.1, which we complete now.

Proof of Claim C.1. We need to prove that OPT (S, r ) ≤ E[OPT (S−1, r − 1)] + 2

|S |
∑

e ∈Ḡ (S )w (e ).

Now, for any i ∈ S , we use oi to denote the agent i is matched to in OPT (S, r ). If the agent is

unmatched in OPT (S, r ), we let oi be a null element. We also extend the notion of edge weights so

thatw (i, ∅) = 0 for all i . Finally, given any i ∈ S , let si denote i’s most preferred node in S , i.e., the
node to which i has an outgoing edge in Ḡ (S ).

Suppose that the (random) serial dictatorship removes the edge (a, sa ) from Ḡ (S ). We proceed in

two cases based on whether or not a is matched to a non-null agent inOPT (S, r ). Let E1 denote the

subset of edges in Ḡ (S ) such that a is matched to an actual agent in OPT , i.e., oa , ∅. Note that sa
may or may not be matched in OPT . Then, for any (a, sa ) ∈ E1, we have that

OPT (S − {a, sa }, r − 1)) ≥ OPT (S, r ) −w (a,oa ) −w (sa ,osa ) +w (oa ,osa ).

That is, OPT (S − {a, sa }, r − 1) is at least as good as the matching obtained by pairing up oa ,osa
and leaving the other edges of OPT (S, r ). The above inequality is robust to osa being empty.
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Observe that by definition w (a,oa ) ≤ w (a, sa ) and via the triangle inequality, w (sa ,osa ) ≤
w (oa , sa )+w (oa ,osa ) ≤ w (oa , soa )+w (oa ,osa ). So, we get a simplified charging argument for edges

in E1,

OPT (S − {a, sa }, r − 1)) ≥ OPT (S, r ) −w (a, sa ) −w (oa , soa ). (26)

Finally, let us denote the remaining edges in Ḡ (S ) as E2, for every edge in E2; we know that

oa = ∅, osa may or may not be empty. We claim that for both of these cases

OPT (S − {a, sa }, r − 1)) ≥ OPT (S, r ) − 2w (a, sa ). (27)

The main idea in this case is provided by the second statement in Proposition 4.3, from which

we infer that the weight of any edge in OPT (S, r ) is at most twice w (a, sa ). So, if osa = ∅, then
OPT (S − {a, sa }, r − 1)) is at least OPT (S, r ) −w (a,oa ). In the case that both of them are null, one

can simply remove any one edge from OPT (S, r ) to get a lower bound for OPT (S − {a, sa }, r − 1)).
We are now ready to complete the proof.

E[OPT (S−1, r − 1)] =
1

|S |

∑
(a,sa )∈Ḡ (S )

OPT (S − {a, sa }, r − 1)

≥ OPT (S, r ) −
1

|S |
{

∑
(a,sa )∈E1

w (a, sa ) +w (oa , soa ) +
∑

(a,sa )∈E2

2w (a, sa )}

≥ OPT (S, r ) −
1

|S |

∑
(a,sa )∈Ḡ (S )

2w (a, sa )

The crucial observation that leads us from line 2 to line 3 is that for any (a, sa ) ∈ E1, the edge

(oa , soa ) must also belong to E1. Therefore, in both of these cases, we are only countingw (oa , soa )
twice. □ □

D PROOF OF PROPOSITION 3.8
Before proving the proposition, we state two important claims which are required to show the main

proposition. Recall thatGR denotes the greedymatching,GR (T ) is the set of N
4
highest-weight edges

inGR andGR (B) = GR \GR (T ). Moreover, given thatGR (B) = χw (OPT ), we useGR (B1) to denote

the highest-weight
χN

2
edges in GR (B) and GR (B2) = GR (B) \ GR (B1). A graphical illustration

can be found in Figure 1. For any given sets S, S ′ ⊆ N we usew (S ) to denote

∑
x,y∈S w (x ,y) and

w (S, S ′) =
∑

x ∈S,y∈S ′w (x ,y). Finally, for the purposes of this proof, we will usewGR
i to denote the

weight of the ith largest (heaviest-weight) edge in GR.

Claim D.1. (Local Stability) Suppose that Algorithm 1 is run on the sub-instance consisting only
of the nodes in T (alternatively B,B1,B2) with the same set of preferences. Then its output isGR (T )
(respectively GR (B),GR (B1),GR (B2)).

Local stability has powerful consequences. For a given instance, we can take a subset of the

greedy matching and show that all of the properties that apply to greedy matchings in general

also apply to the subset, as it can be treated as an independent greedy matching. For the rest of

this proof, we will treat greedy sub-matchings as independent greedy matchings on sub-instances,

when it suits our needs. Our next claim follows from basic algebraic arguments so we simply state

it without proof.

Claim D.2. Consider two vectors (w1

i )
n
i=1

and (w2

i )
n
i=1

that satisfy the following conditions
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(1)

∑n
i=1

w1

i =
∑n

i=1
w2

i
(2) ∃ some index k such that for every r ≤ k ,w1

r ≥ w2

r and for every r > k ,w1

r ≤ w2

r .

Let a be any fixed vector of the same length satisfying a1 ≥ a2 ≥ . . . ≥ an . Then,
n∑
i=1

w1

i ai ≥
n∑
i=1

w2

i ai .

Our final claim is stated in some generality with respect to a greedy (sub-)matching on an

arbitrary set of nodes S .

Claim D.3. Let S ⊆ N be some set of nodes and let GR (S ) denote the output of Algorithm 1 on the
complete edge set on S with k = |S |

2
. Then,

w (S ) ≤ w (GR (S )) +
|S |/2∑
i=1

2wGR (S )
i {|S | − 2i},

wherewGR (S )
i denotes the weight of the ith heaviest edge in GR (S ).

Proof. Let |S | = n. We know that GR (S ) contains n
2
edges. Let (xi ,yi ) denote the i

th
largest

edge in GR (S ), and S−i B S \ {x1,y1,x2,y2, . . . ,xi ,yi }. Now, since the greedy algorithm selected

the edge (xi ,yi ), it is not hard to deduce that for any z ∈ S−i , we have w (xi ,yi ) ≥ w (xi , z) and

w (xi ,yi ) ≥ w (yi , z). Moreover, note thatw (xi ,yi ) = w
GR (S )
i .

Summing the above inequalities for every z ∈ S−i and adding a trivial inequality on both sides,

we get

2|S−i |w
GR (S )
i +wGR (S )

i = 2wGR (S )
i (n − 2i ) +wGR (S )

i ≥
∑
z∈S−i

(w (xi , z) +w (yi , z)) +w (xi ,yi ).

Adding these up for all 1 ≤ i ≤ n
2
gives us the claim. □

Now, we are ready to prove the three statements in Proposition 3.8.

(Proof of Equation 6:w (B1,B2) ≤ 2w (GR (B1)) |B2 |)
The proof is very similar to that of Claim D.3. Since the edges inGR (B1) have larger weight than

those in GR (B2), we infer that for any (x ,y) ∈ GR (B1) and z ∈ B2, we have that

w (x ,y) ≥ w (x , z) and w (x ,y) ≥ w (y, z).

Equation 6 simply follows from the summing the above inequalities for every (x ,y) ∈ GR (B1) and
z ∈ B2. □

(Proof of Equation 7:w (B2) ≤ 2w (GR (B2)){|B2 | −
w (GR (B2 ))

w∗ })

Recall thatw∗ = w (GR (B1 ))
|B1 |/2

=
2w (GR (B1 ))

χN . As a consequence of Claim D.3, we have that

w (B2) ≤ w (GR (B2)) +
|B2 |/2∑
i=1

2wGR (B2 )
i {|B2 | − 2i}. (28)

Since every edge inGR (B1) has larger weight than any given edge inGR (B2), and sincew
∗
denotes

the average weight of the edges in GR (B1), we have that for all 1 ≤ i ≤ |B2 |/2, w
GR (B2 )
i ≤ w∗.

Letb t = ⌊w (GR (B2 ))
w∗ ⌋ be the maximum number of w∗ values that fit into w (GR (B2)) and r =

w (GR (B2))−tw
∗
be the remainder. Then, we can use a charging argument to transform Equation 28

into one whose right hand side depends onw∗.
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Specifically, staring with the second term in the right hand side of Equation 28, and applying

ClaimD.2 on the vectors (w∗,w∗, . . . ,w∗, r , 0, . . . , 0)—w∗ appears exactly t times— and (wGR (B2 )
i ) |B2 |/2

i=1
,

we get that

|B2 |/2∑
i=1

2wGR (B2 )
i {|B2 | − 2i} ≤

∑t
i=1

2w∗ ( |B2 | − 2i ) + 2r ( |B2 | − 2(t + 1))

= 2w∗ ( |B2 |t − t (t + 1)) + 2r ( |B2 | − 2(t + 1))

= 2(w∗t + r ) ( |B2 | − t − 1) − 2r (t + 1)

≤ 2w (GR (B2)) ( |B2 | − t − 1) − 2r (t + r/w∗)

= 2w (GR (B2)) ( |B2 | − t −
r
w∗ − 1)

= 2w (GR (B2)) ( |B2 | −
w (GR (B2 ))

w∗ − 1).

The penultimate and final expressions come from the fact that t + r/w∗ = w (GR (B2 ))
w∗ by definition.

We now wrap up the proof of the second statement in Proposition 3.8,

w (B2) ≤ w (GR (B2)) + 2w (GR (B2)) ( |B2 | −
w (GR (B2))

w∗
− 1) ≤ 2w (GR (B2)) ( |B2 | −

w (GR (B2))

w∗
). □

The proof of the final part of Proposition 3.8 is perhaps the most technically involved of the

three statements. □
(Proof of Equation 8:w (B) ≤ 2|B |w (GR (B)) (1 − 2χ ) as long as χ ∈ [0, 1

4
], χ1 ∈ [0, 1

2
])

Suppose that n = |B | = N
2
. From Claim D.3, we know that

w (B) ≤ w (GR (B)) +
n/2∑
i=1

2wGR (B )
i {n − 2i}. (29)

Our goal for this part of the proof is to show that (over all possible distributions of greedy edge

weights satisfying the condition χ1 ∈ [0, 1

2
]), the maximum value of the second term in the above

inequality is obtained when the top 2χn edges of the greedy matching all have the same weight,

specifically
w (GR (B ))

2χn . First, definem = χn. Note thatwGR (B )
m is the weight of the lightest (lowest-

weight) edge in GR (B1) (since GR (B) has n/2 edges and GR (B1) has χn edges). Our proof will

crucially depend on the weight ofmth
heaviest edge in GR (B), so let us use w̄ to denote wGR (B )

m .

Our first claim on the way to showing Equation 8 is the following:

m∑
i=1

2wGR (B )
i {n − 2i} ≤ 2w0 (n − 2) +

m∑
i=2

2w̄ (n − 2i ), (30)

wherew0 is defined so thatw0 +
∑m

i=2
w̄ =

∑m
i=1

wGR (B )
i . To see why this is the case, consider the

two equal-length vectors w1 = (w0, w̄, . . . , w̄ ) and w2 = (wGR (B )
1

, . . . ,wGR (B )
m ). Since every entity

in w2
is at least w̄ (by definition) and the two vectors sum up to the same quantity, it must be the

case thatw0 ≥ wGR (B )
1

. So, we can apply our general Claim D.2 and get Equation 30. Next, we state

a similar claim for the rest of the edges in GR (B).
n
2∑

i=m+1

2wGR (B )
i {n − 2i} ≤

2m∑
i=m+1

2w̄ (n − 2i ) + 2wf (n − 2(2m + 1)), (31)

where wf is defined so that

∑
2m+1

i=m+1
w̄ +wf =

∑ n
2

i=m+1
wGR (B )
i . Since χ1 ≤

1

2
, wf must be non-

negative. Indeed, we have that

∑
2m
i=m+1

w̄ ≤
∑m

i=1
wGR (B )
i ≤

∑n/2

i=m+1
wGR (B )
i . Therefore, wf =
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∑n/2

i=m+1
wGR (B )
i −

∑
2m
i=m+1

w̄ ≥ 0. Once again, Equation 31 can be shown via an application of

Claim D.2, since for every i > m, wGR (B )
i ≤ w̄ , so we are simply transferring the weights to the

smaller indices. Combining Equations 30 and 31, we get the following intermediate inequality, from

which it is more convenient to arrive at the required claim.

n/2∑
i=1

2wGR
i {n − 2i} ≤ 2w0 (n − 2) + 2

2m∑
i=2

w̄ (n − 2i ) + 2wf (n − 2(2m + 1)).

Moreover, since w0 +
∑m

i=2
w̄ =

∑m
i=1

wGR (B )
i ≤

∑n/2

i=m+1
wGR (B )
i =

∑
2m
i=m+1

w̄ +wf , it must be the

case that w0 ≤ w̄ +wf . Let ϵ = w0 − w̄ . Clearly, ϵ ≤ wf and therefore, the following inequality

holds:

ϵ (n − 2) +wf (n − 2(2m + 1)) ≤ (ϵ +wf )
n − 2 + n − 2(2m + 1)

2

= (ϵ +wf ) (n − 2m − 2). (32)

The rest of the proof follows from direct algebraic manipulation and an application of Equation 32.

n/2∑
i=1

2wGR
i {n − 2i} ≤ 2(w̄ + ϵ ) (n − 2) + 2

2m∑
i=2

w̄ (n − 2i ) + 2wf (n − 2(2m + 1))

=

2m∑
i=1

w̄ (n − 2i ) + 2ϵ (n − 2) + 2wf (n − 2(2m + 1))

≤ 2w̄ · 2m(n − 2m − 1) + 2(ϵ +wf ) (n − 2m − 2)

≤ 2w̄ · 2m(n − 2m − 1) + 2(ϵ +wf ) (n − 2m − 1)

= 2(2mw̄ + ϵ +wf ) (n − 2m − 1)

= 2w (GR (B))) (n − 2m − 1).

Note that by definition,w (GR (B)) = w0 + (2m − 1)w̄ +wf = ϵ + 2mw̄ +wf . Of course, we can

now complete the proof by plugging this back into Equation 29, i.e., we have that

w (B) ≤ w (GR (B)) + 2w (GR (B)) (n − 2m − 1)

≤ w (GR (B)) (n − 2m)

= nw (GR (B)) (1 − 2m/n) = nw (GR (B)) (1 − 2χ ) □

This completes the proof of the final part of Proposition 3.8. □

E 8-APPROXIMATE TRUTHFUL ALGORITHM FOR DENSEST K-SUBGRAPH
E.1 Approximation Algorithm when k ≥ N

2

Claim E.1. (Trivial Algorithm) Suppose that k ≥ N
2
, then the algorithm that selects a set of size

k uniformly at random from N is a universally truthful 8-approximation algorithm for Densest
k-subgraph.

Proof. The truthfulness of this algorithm is quite obvious so we show the approximation factor.

A trival upper bound for OPT is OPT ≤ w (N ), wherew (T ) denotes the total weight of the graph
induced by T .
Let S be the random set returned by the above algorithm. Then, for some i, j ∈ N , what is

the probability that i, j ∈ S : this probability is exactly
(N−2

k−2
)

(Nk )
. As expected, the worst case occurs

when k = N
2
, giving us Pr (i, j ∈ S ) ≥ N /2−1

2(N−1) ≥
1

6
for N > 3. Therefore, we have that E[w (S )] ≥

1

6

∑
i, j ∈N w (i, j ) ≥ 1

8

∑
i, j ∈N w (i, j ). □
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